Search results for: multimodal optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3458

Search results for: multimodal optimization

2798 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 106
2797 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate

Procedia PDF Downloads 260
2796 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication

Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama

Abstract:

The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.

Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication

Procedia PDF Downloads 517
2795 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm

Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei

Abstract:

This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.

Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network

Procedia PDF Downloads 669
2794 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization

Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur

Abstract:

In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.

Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization

Procedia PDF Downloads 445
2793 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements

Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.

Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management

Procedia PDF Downloads 245
2792 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: inversion, limitations, optimization, resistivity

Procedia PDF Downloads 365
2791 Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests.

Keywords: steel racks, thin-walled cold-formed elements, structural optimization, hierarchy rules, dog-bone philosophy

Procedia PDF Downloads 163
2790 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings

Authors: Sujoy Anirudha Das, Albert Thomas

Abstract:

Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.

Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework

Procedia PDF Downloads 177
2789 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 288
2788 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework

Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.

Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles

Procedia PDF Downloads 15
2787 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
2786 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)

Procedia PDF Downloads 323
2785 The Social Aspects of Code-Switching in Online Interaction: The Case of Saudi Bilinguals

Authors: Shirin Alabdulqader

Abstract:

This research aims to investigate the concept of code-switching (CS) between English, Arabic, and the CS practices of Saudi online users via a Translanguaging (TL) lens for more inclusive view towards the nature of the data from the study. It employs Digitally Mediated Communication (DMC), specifically the WhatsApp and Twitter platforms, in order to understand how the users employ online resources to communicate with others on a daily basis. This project looks beyond language and considers the multimodal affordances (visual and audio means) that interlocutors utilise in their online communicative practices to shape their online social existence. This exploratory study is based on a data-driven interpretivist epistemology as it aims to understand how meaning (reality) is created by individuals within different contexts. This project used a mixed-method approach, combining a qualitative and a quantitative approach. In the former, data were collected from online chats and interview responses, while in the latter a questionnaire was employed to understand the frequency and relations between the participants’ linguistic and non-linguistic practices and their social behaviours. The participants were eight bilingual Saudi nationals (both men and women, aged between 20 and 50 years old) who interacted with others online. These participants provided their online interactions, participated in an interview and responded to a questionnaire. The study data were gathered from 194 WhatsApp chats and 122 Tweets. These data were analysed and interpreted according to three levels: conversational turn taking and CS; the linguistic description of the data; and CS and persona. This project contributes to the emerging field of analysing online Arabic data systematically, and the field of multimodality and bilingual sociolinguistics. The findings are reported for each of the three levels. For conversational turn taking, the CS analysis revealed that it was used to accomplish negotiation and develop meaning in the conversation. With regard to the linguistic practices of the CS data, the majority of the code-switched words were content morphemes. The third level of data interpretation is CS and its relationship with identity; two types of identity were indexed; absolute identity and contextual identity. This study contributes to the DMC literature and bridges some of the existing gaps. The findings of this study are that CS by its nature, and most of the findings, if not all, support the notion of TL that multiliteracy is one’s ability to decode multimodal communication, and that this multimodality contributes to the meaning. Either this is applicable to the online affordances used by monolinguals or multilinguals and perceived not only by specific generations but also by any online multiliterates, the study provides the linguistic features of CS utilised by Saudi bilinguals and it determines the relationship between these features and the contexts in which they appear.

Keywords: social media, code-switching, translanguaging, online interaction, saudi bilinguals

Procedia PDF Downloads 131
2784 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 339
2783 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: efficiency, exergy, gas turbine, temperature

Procedia PDF Downloads 284
2782 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all program of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.

Keywords: admission process model, assignment problem, Hungarian Method, Least Cost Method, Northwest Corner Method, SAM

Procedia PDF Downloads 500
2781 The Use of Punctuation by Primary School Students Writing Texts Collaboratively: A Franco-Brazilian Comparative Study

Authors: Cristina Felipeto, Catherine Bore, Eduardo Calil

Abstract:

This work aims to analyze and compare the punctuation marks (PM) in school texts of Brazilian and French students and the comments on these PM made spontaneously by the students during the ongoing text. Assuming textual genetics as an investigative field within a dialogical and enunciative approach, we defined a common methodological design in two 1st year classrooms (7 years old) of the primary school, one classroom in Brazil (Maceio) and the other one in France (Paris). Through a multimodal capture system of writing processes in real time and space (Ramos System), we recorded the collaborative writing proposal in dyads in each of the classrooms. This system preserves the classroom’s ecological characteristics and provides a video recording synchronized with dialogues, gestures and facial expressions of the students, the stroke of the pen’s ink on the sheet of paper and the movement of the teacher and students in the classroom. The multimodal register of the writing process allowed access to the text in progress and the comments made by the students on what was being written. In each proposed text production, teachers organized their students in dyads and requested that they should talk, combine and write a fictional narrative. We selected a Dyad of Brazilian students (BD) and another Dyad of French students (FD) and we have filmed 6 proposals for each of the dyads. The proposals were collected during the 2nd Term of 2013 (Brazil) and 2014 (France). In 6 texts written by the BD there were identified 39 PMs and 825 written words (on average, a PM every 23 words): Of these 39 PMs, 27 were highlighted orally and commented by either student. In the texts written by the FD there were identified 48 PMs and 258 written words (on average, 1 PM every 5 words): Of these 48 PM, 39 were commented by the French students. Unlike what the studies on punctuation acquisition point out, the PM that occurred the most were hyphens (BD) and commas (FD). Despite the significant difference between the types and quantities of PM in the written texts, the recognition of the need for writing PM in the text in progress and the comments have some common characteristics: i) the writing of the PM was not anticipated in relation to the text in progress, then they were added after the end of a sentence or after the finished text itself; ii) the need to add punctuation marks in the text came after one of the students had ‘remembered’ that a particular sign was needed; iii) most of the PM inscribed were not related to their linguistic functions, but the graphic-visual feature of the text; iv) the comments justify or explain the PM, indicating metalinguistic reflections made by the students. Our results indicate how the comments of the BD and FD express the dialogic and subjective nature of knowledge acquisition. Our study suggests that the initial learning of PM depends more on its graphic features and interactional conditions than on its linguistic functions.

Keywords: collaborative writing, erasure, graphic marks, learning, metalinguistic awareness, textual genesis

Procedia PDF Downloads 162
2780 Homoeopathy with Integrative Approach in the World of Attention Deficit Hyperactivity Disorder

Authors: Mansi Chinchanikar

Abstract:

Homoeopathy is the second most widely used medical system in the world, yet the homoeopaths of India and around the world are sick of reading or hearing about how homoeopathy is only a placebo effect and cannot cure or even manage any disease. However, individuals making such unfounded claims should explain to the group how a homoeopathic placebo, particularly one for a neurodevelopmental disease like Attention Deficit Hyperactivity Disorder (ADHD), can be effective in children, with studies to back it up their skeptics. This literary review work exhibits how homoeopathy with a multimodal approach may show a considerable proportion of ADHD patients in India and throughout the world successfully manageable and treatable according to growing study evidence, ruling out the hazardous conventional medicines. Indeed, homeopathy can help cure ADHD symptoms either on its own or in combination with other types of integrative systems.

Keywords: ADHD, adult ADHD, homoeopathy, integrative approach

Procedia PDF Downloads 81
2779 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System

Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed

Abstract:

This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.

Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing

Procedia PDF Downloads 497
2778 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 91
2777 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques

Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk

Abstract:

Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.

Keywords: optimization, fishbone, diagram, productivity

Procedia PDF Downloads 312
2776 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks

Procedia PDF Downloads 445
2775 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design

Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park

Abstract:

In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.

Keywords: APV, topology optimum design, DNV, structural analysis, stress

Procedia PDF Downloads 426
2774 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 368
2773 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing

Authors: Thomas Yeboah

Abstract:

Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.

Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing

Procedia PDF Downloads 628
2772 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: biogas, exergy, efficiency, optimization

Procedia PDF Downloads 370
2771 Optimizing SCADA/RTU Control System Alarms for Gas Wells

Authors: Mohammed Ali Faqeeh

Abstract:

SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages.

Keywords: SCADA, RTU Communication, alarm management system, SCADA alarms, Modbus, DNP protocol

Procedia PDF Downloads 166
2770 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 655
2769 Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small.

Keywords: waste tire pyrolysis char, chemical activation, central composite design (CCD), adsorption capacity, numerical optimization

Procedia PDF Downloads 226