Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3705

Search results for: adsorption capacity

3705 CO₂ Capture by Clay and Its Adsorption Mechanism

Authors: Jedli Hedi, Hedfi Hachem, Abdessalem Jbara, Slimi Khalifa

Abstract:

Natural and modified clay were used as an adsorbent for CO2 capture. Sample of clay was subjected to acid treatments to improve their textural properties, namely, its surface area and pore volume. The modifications were carried out by heating the clays at 120 °C and then by acid treatment with 3M sulphuric acid solution at boiling temperature for 10 h. The CO2 adsorption capacities of the acid-treated clay were performed out in a batch reactor. It was found that the clay sample treated with 3M H2SO4 exhibited the highest Brunauer–Emmett–Teller (BET) surface area (16.29–24.68 m2/g) and pore volume (0.056–0.064 cm3/g). After the acid treatment, the CO2 adsorption capacity of clay increased. The CO2 adsorption capacity of clay increased after the acid treatment. The CO2 adsorption by clay, were characterized by SEM, FTIR, ATD-ATG and BET method. For describing the phenomenon of CO2 adsorption for these materials, the adsorption isotherms were modeled using the Freundlich and Langmuir models. CO2 adsorption isotherm was found attributable to physical adsorption.

Keywords: clay, acid treatment, CO2 capture, adsorption mechanism

Procedia PDF Downloads 115
3704 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials

Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.

Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB

Procedia PDF Downloads 130
3703 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee

Abstract:

Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.

Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration

Procedia PDF Downloads 128
3702 Adsorption of Peppermint Essential Oil by Polypropylene Nanofiber

Authors: Duduku Krishnaiah, S. M. Anisuzzaman, Kumaran Govindaraj, Chiam Chel Ken, Zykamilia Kamin

Abstract:

Pure essential oil is highly demanded in the market since most of the so-called pure essential oils in the market contains alcohol. This is because of the usage of alcohol in separating oil and water mixture. Removal of pure essential oil from water without using any chemical solvent has become a challenging issue. Adsorbents generally have the properties of separating hydrophobic oil from hydrophilic mixture. Polypropylen nanofiber is a thermoplastic polymer which is produced from propylene. It was used as an adsorbent in this study. Based on the research, it was found that the polypropylene nanofiber was able to adsorb peppermint oil from the aqueous solution over a wide range of concentration. Based on scanning electron microscope (SEM), nanofiber has very small nano diameter fiber size in average before the adsorption and larger scaled average diameter of fibers after adsorption which indicates that smaller diameter of nanofiber enhances the adsorption process. The adsorption capacity of peppermint oil increases as the initial concentration of peppermint oil and amount of polypropylene nanofiber used increases. The maximum adsorption capacity of polypropylene nanofiber was found to be 689.5 mg/g at (T= 30°C). Moreover, the adsorption capacity of peppermint oil decreases as the temperature of solution increases. The equilibrium data of polypropylene nanofiber is best represented by Freundlich isotherm with the maximum adsorption capacity of 689.5 mg/g. The adsorption kinetics of polypropylene nanofiber was best represented by pseudo-second order model.

Keywords: nanofiber, adsorption, peppermint essential oil, isotherms, adsorption kinetics

Procedia PDF Downloads 45
3701 Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption

Authors: Nattawat Thongpraphai, Anusorn Boonpoke

Abstract:

This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend.

Keywords: adsorption, turmeric, colour, curcuminoids, activated carbon

Procedia PDF Downloads 289
3700 Adsorption of Bovine Serum Albumine on CeO2

Authors: Roman Marsalek

Abstract:

Preparation of nano-particles of cerium oxide and adsorption of bovine serum albumine on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nano-particles was 9 nm. The simultaneous measurements of the bovine serum albumine adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nano-particles. The maximum adsorption capacity was found for strongly acid suspension (am=118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumine on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nano-particles plays the key role in adsorption of proteins on such type of materials.

Keywords: adsorption, BSA, cerium oxide nanoparticles, zeta potential, albumin

Procedia PDF Downloads 264
3699 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders

Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik

Abstract:

In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.

Keywords: nanopowders, hydroxyapatite, heavy metals, adsorption

Procedia PDF Downloads 186
3698 Activated Carbons Prepared from Date Pits for Hydrogen Storage

Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso

Abstract:

In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.

Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption

Procedia PDF Downloads 402
3697 Synthesis and Characterization of Thiourea-Formaldehyde Coated Fe3O4 ([email protected]) and Its Application for Adsorption of Methylene Blue

Authors: Saad M. Alshehri, Tansir Ahamad

Abstract:

Thiourea-Formaldehyde Pre-Polymer (TUF) was prepared by the reaction thiourea and formaldehyde in basic medium and used as a coating materials for magnetite Fe3O4. The synthesized polymer coated microspheres ([email protected]) was characterized using FTIR, TGA SEM and TEM. Its BET surface area was up to 1680 m2 g_1. The adsorption capacity of this ACF product was evaluated in its adsorption of Methylene Blue (MB) in water under different pH values and different temperature. We found that the adsorption process was well described both by the Langmuir and Freundlich isotherm model. The kinetic processes of MB adsorption onto [email protected] were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo second-order rate model. Evaluated ∆Go and ∆Ho specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (∆So is negative). The monolayer capacity for MB was up to 450 mg g_1 and was one of the highest among similar polymeric products. It was due to its large BET surface area.

Keywords: TGA, FTIR, magentite, thiourea formaldehyde resin, methylene blue, adsorption

Procedia PDF Downloads 205
3696 GAC Adsorption Modelling of Metsulfuron Methyl from Water

Authors: Nathaporn Areerachakul

Abstract:

In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone.

Keywords: isotherm, adsorption equilibrium, GAC, metsulfuron methyl

Procedia PDF Downloads 179
3695 Isotherm Study for Phenol Removal onto GAC

Authors: Lallan Singh Yadav, Bijay Kumar Mishra, Manoj Kumar Mahapatra, Arvind Kumar

Abstract:

Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work.

Keywords: adsorption, phenol, granular activated carbon, bioinformatics, biomedicine

Procedia PDF Downloads 409
3694 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 158
3693 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices

Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu

Abstract:

Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.

Keywords: adsorption, biochar, imidacloprid, soil, tillage

Procedia PDF Downloads 9
3692 Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives

Authors: Raied, Badr, E. I. El-Shafey

Abstract:

Cyclodextrin (CD) derivatives (αCD, βCD, γCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a crosslinker. The ratio of silica to CD was optimized in preliminary experiments based on the best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-γCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations were noticed for iodine adsorption at different pH values; thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-bCD than other adsorbents with kinetic adsorption data fitting well pseudo-second-order model. The activation energy (Eₐ) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-γCD (435 mg/g). A thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle.

Keywords: adsorption, iodine, silica, cyclodextrin, functionalization, epichlorohydrin

Procedia PDF Downloads 6
3691 Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shamsollah Alijanlou

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, nano gamma alumina

Procedia PDF Downloads 215
3690 In-Situ Synthesis of Zinc-Containing MCM-41 and Investigation of Its Capacity for Removal of Hydrogen Sulfide from Crude Oil

Authors: Nastaran Hazrati, Ali Akbar Miran Beigi, Majid Abdouss, Amir Vahid

Abstract:

Hydrogen sulfide is the most toxic gas of crude oil. Adsorption is an energy-efficient process used to remove undesirable compounds such as H2S in gas or liquid streams by passing the stream through a media bed composed of an adsorbent. In this study, H2S of Iran crude oil was separated via cold stripping then zinc incorporated MCM-41 was synthesized via an in-situ method. ZnO functionalized mesoporous silica samples were characterized by XRD, N2 adsorption and TEM. The obtained results of adsorption of H2S showed superior ability of all the materials and with an increase in ZnO amount adsorption was increased.

Keywords: MCM-41, ZnO, H2S removal, adsorption

Procedia PDF Downloads 322
3689 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 61
3688 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B

Authors: Ceren Karaman, Onur Karaman

Abstract:

The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.

Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification

Procedia PDF Downloads 141
3687 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen

Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane

Abstract:

The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterial

Keywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm

Procedia PDF Downloads 222
3686 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 124
3685 Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shallah Alijanlo

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO2, CO, NO2, NO, and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: acrylic fiber, adsorbent, wet spun, polyacryl company, nano gamma alumina

Procedia PDF Downloads 65
3684 Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

Authors: Salem Ali Jebreil

Abstract:

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

Keywords: adsorption, composite, dye, polyaniline, tartrazine

Procedia PDF Downloads 162
3683 The Study of Chitosan beads Adsorption Properties for the Removal of Heavy Metals

Authors: Peter O. Osifo, Hein W. J. P. Neomagus

Abstract:

In this study, a predicted pH model was used to determine adsorption equilibrium properties of copper, lead, zinc and cadmium. Chitosan was prepared from the exoskeleton of Cape rock-lobsters, collected from the surroundings of Cape Town, South Africa. The beads were cross-linked with gluteraldehyde to restore its chemical stability in acid media. The chitosan beads were characterized; the beads water contents and pKa varied in the range of 90-96% and 4.3-6.0 respectively and the degree of crosslinking for the beads was 18%. A pH-model, which described the reversibility of the metal adsorbed onto the beads, was used to predict the equilibrium properties of copper, lead, zinc and cadmium adsorption onto the cross-linked beads. The model accounts for the effect of pH and the important model parameters; the equilibrium adsorption constant (Kads) and to a lesser extent the adsorbent adsorption capacity (qmax). The adsorption equilibrium constant for copper, lead, zinc and cadmium were found to be 2.58×10-3, 2.22×0-3, 9.55×0-3, and 4.79×0-3, respectively. The adsorbent maximum capacity was determined to be 4.2 mmol/g.

Keywords: chitosan beads, adsorption, heavy metals, waste water

Procedia PDF Downloads 278
3682 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 150
3681 Enhancement of CO2 Capture by Using Cu-Nano-Zeolite Synthesized

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Chi-Hyeon Lee, Jitae Kim

Abstract:

In this study synthesized Cu-nano-zeolite was evaluated for its potential use in CO2 capture. The specific surface area of Cu-nano zeolite was measured as 869.32 m2/g with a pore size of 3.86 nm. The adsorption capacity of CO2 by Cu-nano zeolite was decreased with increasing temperature. The identified adsorption capacity of CO2 by Cu-nano zeolite was 7.16 mmol/g at a temperature of 20 oC and at pressure of 1 atm. The adoption selectivity of CO2 over N2 strongly depend on the temperature and the highest selectivity by Cu-nano zeolite was 50.71 at 20 oC. From analysis of regeneration characteristics of CO2 loaded adsorbent, the percentage removal of CO2 was maintained at more than 78.2 % even after 10 cycles of adsorption-desorption. Based on these result, the Cu-nano zeolite can be used as an effective and economical adsorbent for CO2 capture.

Keywords: CO2 capture, selectivity, Cu-nano zeolite, regeneration.

Procedia PDF Downloads 162
3680 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: adsorption, cooling, Egypt, environment, solar energy

Procedia PDF Downloads 71
3679 Kinetics and Adsorption Studies of Tetracycline from Aqueous Solution Using Melon Husk

Authors: Ungwanen John Ahile, Sylvester Obaike Adejo, Simon Terver Ubwa, Raymond Lubem Tyohemba, Pius Utange, Mnena G. Ikyagh

Abstract:

The adsorption of tetracycline from aqueous solution was carried out using melon husk as a low-cost adsorbent. The adsorption was characterized using standard methods and values obtained were; pH = 7.80, bulk density = 0.43 g/mL, ash content = 2.2 %, moisture content = 8.27 %, attrition = 1%, and iodine number = 552 mg/g. Adsorption capacity was found to vary with initial concentration, adsorbent dosage, pH, contact time and temperature, the maximum adsorption capacity in each case was found to be at; 30 mg/L for concentration, 0.8 g for adsorbent dose, 5 for pH, 60 minutes for time and 30 °C for temperature. FTIR analysis was done to analyses the surface functional groups which shows the presence of O-H stretch, at 3743.92 corresponding to alcohol, phenols, C-H stretch at 2923.27 indicative of alkanes, H-C=O: C-H stretch at 2725.76 corresponding to aldehyde, C-C stretch at 1462.72 corresponding to aromatic, SEM analysis carried out revealed a rough and smooth morphology of the uncontacted and contacted adsorbent respectively. The experimental data judging from the R2 values fitted best into the Temkin isotherm. The fitting of tetracycline adsorption into the pseudo second order kinetic model (R2 of 0.9992) is suggestive of chemisorption for the adsorbent.

Keywords: adsorption, adsorbent isotherm, antibiotics, tertracycline

Procedia PDF Downloads 146
3678 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water

Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad

Abstract:

In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.

Keywords: adsorption, biochar, chemisorption, polluted water

Procedia PDF Downloads 42
3677 A Greener Approach for the Recovery of Proteins from Meat Industries

Authors: Jesus Hernandez, Zead Elzoeiry, Md. S. Islam, Abel E. Navarro

Abstract:

The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product.

Keywords: adsorption, albumin, clay, hemoglobin, spent peppermint leaf

Procedia PDF Downloads 22
3676 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions

Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska

Abstract:

Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.

Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption

Procedia PDF Downloads 73