Search results for: marking vector
538 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 382537 Index of Suitability for Culex pipiens sl. Mosquitoes in Portugal Mainland
Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, REVIVE team
Abstract:
The environment of the mosquitoes complex Culex pipiens sl. in Portugal mainland is evaluated based in its abundance, using a data set georeferenced, collected during seven years (2006-2012) from May to October. The suitability of the different regions can be delineated using the relative abundance areas; the suitablility index is directly proportional to disease transmission risk and allows focusing mitigation measures in order to avoid outbreaks of vector-borne diseases. The interest in the Culex pipiens complex is justified by its medical importance: the females bite all warm-blooded vertebrates and are involved in the circulation of several arbovirus of concern to human health, like West Nile virus, iridoviruses, rheoviruses and parvoviruses. The abundance of Culex pipiens mosquitoes were documented systematically all over the territory by the local health services, in a long duration program running since 2006. The environmental factors used to characterize the vector habitat are land use/land cover, distance to cartographed water bodies, altitude and latitude. Focus will be on the mosquito females, which gonotrophic cycle mate-bloodmeal-oviposition is responsible for the virus transmission; its abundance is the key for the planning of non-aggressive prophylactic countermeasures that may eradicate the transmission risk and simultaneously avoid chemical ambient degradation. Meteorological parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures) and daily total rainfall were gathered from the weather stations network for the same dates and crossed with the standardized females’ abundance in a geographic information system (GIS). Mean capture and percentage of above average captures related to each variable are used as criteria to compute a threshold for each meteorological parameter; the difference of the mean capture above/below the threshold was statistically assessed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the meaningful thresholds for each parameter. The intersection of the maps of all the parameters obtained for each month show the evolution of the suitable meteorological conditions through the mosquito season, considered as May to October, although the first and last month are less relevant. In parallel, mean and above average captures were related to the physiographic parameters – the land use/land cover classes most relevant in each month, the altitudes preferred and the most frequent distance to water bodies, a factor closely related with the mosquito biology. The maps produced with these results were crossed with the meteorological maps previously segmented, in order to get an index of suitability for the complex Culex pipiens evaluated all over the country, and its evolution from the beginning to the end of the mosquitoes season.Keywords: suitability index, Culex pipiens, habitat evolution, GIS model
Procedia PDF Downloads 576536 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 74535 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 538534 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma
Authors: J. K. Chawla, S. K. Jain, M. K. Mishra
Abstract:
Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation
Procedia PDF Downloads 610533 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 67532 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 416531 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System
Authors: Shripad Kulkarni
Abstract:
Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.Keywords: organic production system, diseases, bioagents and polyhouse, agriculture
Procedia PDF Downloads 406530 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 279529 Vehicle Type Classification with Geometric and Appearance Attributes
Authors: Ghada S. Moussa
Abstract:
With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification
Procedia PDF Downloads 338528 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data
Authors: Rudra P. Pradhan
Abstract:
This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.Keywords: energy consumption, financial development, FATF countries, Panel VECM
Procedia PDF Downloads 265527 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory
Authors: Dairo Jose Hernandez Paez
Abstract:
The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations
Procedia PDF Downloads 104526 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 161525 A Reliable Multi-Type Vehicle Classification System
Authors: Ghada S. Moussa
Abstract:
Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm
Procedia PDF Downloads 358524 Predicting the Potential Geographical Distribution of the Banana Aphid (Pentalonia nigronervosa) as Vector of Banana Bunchy Top Virus Using Diva-GIS
Authors: Marilyn Painagan
Abstract:
This study was conducted to predict the potential geographical distribution of the banana aphid (Pentalonia negronervosa) in North Cotabato through climate envelope approach of DIVA-GIS, a software for analyzing the distribution of organisms to elucidate geographic and ecological patterns. A WorldClim database that was based on weather conditions recorded last 1950 to 2000 with a spatial resolution of approximately 1x1 km. was used in the bioclimatic modelling, this database includes temperature, precipitation, evapotranspiration and bioclimatic variables which was measured at many different locations, a bioclimatic modelling was done in the study. The study revealed that the western part of Magpet and Arakan and the municipality of Antipas are at high potential risk of occurrence of banana aphid while it is not likely to occur in the municipalities of Aleosan, Midsayap, Pikit, M’lang and Tulunan. The result of this study can help developed strategies for monitoring and managing this serious pest of banana and to prepare a mitigation measures on those areas that are potential for future infestation.Keywords: banana aphid, bioclimatic model, bunchy top, climatic envelope approach
Procedia PDF Downloads 258523 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 451522 The Urban Project: Metropolization Tool and Sustainability Vector - Case of Constantine
Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad, Chouabbia Khedidja
Abstract:
Cities grow, large or small; they seek to gain a place in the market competition, which talks to sell a product that is the city itself. The metropolis are large cities enjoying a legal status and assets providing their dominions elements on a territory larger than their range, do not escape this situation. Thus, the search for promising tool metropolises better development and durability meet the challenges as economic, social and environmental is timely. The urban project is a new way to build the city; it is involved in the metropolises of two ways, either to manage the crisis and to meet the internal needs of the metropolis, or by creating a regional attractiveness with their potential. This communication will address the issue of urban project as a tool that has and should find a place in the panoply of existing institutional tools. Based on the example of the modernization project of the metropolis of eastern Algeria "Constantine", we will examine what the urban project can bring to a city, the extent of its impact but also the relationship between the visions actors so metropolization a success.Keywords: urban project, metropolis, institutional tools, Constantine
Procedia PDF Downloads 403521 Displaying Compostela: Literature, Tourism and Cultural Representation, a Cartographic Approach
Authors: Fernando Cabo Aseguinolaza, Víctor Bouzas Blanco, Alberto Martí Ezpeleta
Abstract:
Santiago de Compostela became a stable object of literary representation during the period between 1840 and 1915, approximately. This study offers a partial cartographical look at this process, suggesting that a cultural space like Compostela’s becoming an object of literary representation paralleled the first stages of its becoming a tourist destination. We use maps as a method of analysis to show the interaction between a corpus of novels and the emerging tradition of tourist guides on Compostela during the selected period. Often, the novels constitute ways to present a city to the outside, marking it for the gaze of others, as guidebooks do. That leads us to examine the ways of constructing and rendering communicable the local in other contexts. For that matter, we should also acknowledge the fact that a good number of the narratives in the corpus evoke the representation of the city through the figure of one who comes from elsewhere: a traveler, a student or a professor. The guidebooks coincide in this with the emerging fiction, of which the mimesis of a city is a key characteristic. The local cannot define itself except through a process of symbolic negotiation, in which recognition and self-recognition play important roles. Cartography shows some of the forms that these processes of symbolic representation take through the treatment of space. The research uses GIS to find significant models of representation. We used the program ArcGIS for the mapping, defining the databases starting from an adapted version of the methodology applied by Barbara Piatti and Lorenz Hurni’s team at the University of Zurich. First, we designed maps that emphasize the peripheral position of Compostela from a historical and institutional perspective using elements found in the texts of our corpus (novels and tourist guides). Second, other maps delve into the parallels between recurring techniques in the fictional texts and characteristic devices of the guidebooks (sketching itineraries and the selection of zones and indexicalization), like a foreigner’s visit guided by someone who knows the city or the description of one’s first entrance into the city’s premises. Last, we offer a cartography that demonstrates the connection between the best known of the novels in our corpus (Alejandro Pérez Lugín’s 1915 novel La casa de la Troya) and the first attempt to create package tourist tours with Galicia as a destination, in a joint venture of Galician and British business owners, in the years immediately preceding the Great War. Literary cartography becomes a crucial instrument for digging deeply into the methods of cultural production of places. Through maps, the interaction between discursive forms seemingly so far removed from each other as novels and tourist guides becomes obvious and suggests the need to go deeper into a complex process through which a city like Compostela becomes visible on the contemporary cultural horizon.Keywords: compostela, literary geography, literary cartography, tourism
Procedia PDF Downloads 392520 Mechanical Transmission of Parasites by Cockroaches’ Collected from Urban Environment of Lahore, Pakistan
Authors: Hafsa Memona, Farkhanda Manzoor
Abstract:
Cockroaches are termed as medically important pests because of their wide distribution in human habitation including houses, hospitals, food industries and kitchens. They may harbor multiple drug resistant pathogenic bacteria and protozoan parasites on their external surfaces, disseminate on human food and cause serious diseases and allergies to human. Hence, they are regarded as mechanical vector in human habitation due to their nocturnal activity and nutritional behavior. Viable eggs and dormant cysts of parasites can hitch a ride on cockroaches. Ova and cysts of parasitic organism may settle into the crevices and cracks between thorax and head. There are so many fissures and clefts and crannies on a cockroach which provide site for these organisms. This study aimed with identifying role of cockroaches in mechanically transmitting and disseminating gastrointestinal parasites in two environmental settings; hospitals and houses in urban area of Lahore. Totally, 250 adult cockroaches were collected from houses and hospitals by sticky traps and food baited traps and screened for parasitic load. All cockroaches were captured during their feeding time in natural habitat. Direct wet smear, 1% lugols iodine and modified acid-fast bacilli staining were used to identify the parasites from the body surfaces of cockroaches. Among human habitation two common species of cockroaches were collected i.e. P. americana and B. germanica. The results showed that 112 (46.8%) cockroaches harbored at least one human intestinal parasite on their body surfaces. The cockroaches from hospital environment harboured more parasites than houses. 47 (33.57%) cockroaches from houses and 65 (59.09%) from hospitals were infected with parasitic organisms. Of these, 76 (67.85%) were parasitic protozoans and 36(32.15%) were pathogenic and non-pathogenic intestinal parasites. P. americana harboured more parasites as compared to B. germanica in both environment. Most common human intestinal parasites found on cockroaches include ova of Ascaris lumbricoides (giant roundworm), Trichuris trichura (whipworm), Anchylostoma deodunalae (hookworm), Enterobius vermicularis (pinworm), Taenia spp. and Strongyloides stercoralis (threadworm). The cysts of protozoans’ parasites including Balantidium coli, Entomoeba hystolitica, C. parvum, Isospora belli, Giardia duodenalis and C. cayetenensis were isolated and identified from cockroaches. Both experimental sites were significantly different in carriage of parasitic load on cockroaches. Difference in the hygienic condition of the environments, including human excrement disposal, variable habitat interacted, indoor and outdoor species, may account for the observed variation in the parasitic carriage rate of cockroaches among different experimental site. Thus a finding of this study is that Cockroaches are uniformly distributed in human habitation and act as a mechanical vector of pathogenic parasites that cause common illness such as diarrhea and bowel disorders. This fact contributes to epidemiological chain therefore control of cockroaches will significantly lessen the prevalence of illness in human. Effective control strategies will reduce the public health burden of the gastro-intestinal parasites in the developing countries.Keywords: cockroaches, health risks, hospitals, houses, parasites, protozoans, transmission
Procedia PDF Downloads 281519 Infection of Phlebotomus Sergenti with Leishmania Tropica in a Classical Focus of Leishmania Major in Tunisia
Authors: Kaouther Jaouadi, Jihene Bettaieb, Amira Bennour, Ghassen Kharroubi, Sadok Salem, Afif Ben Salah
Abstract:
In Tunisia, chronic cutaneous leishmaniasis due to Leishmania (L) tropica is an important health problem. Its spreading has not been fully elucidated. Information on sandfly vectors, as well as their associated Leishmania species, is of paramount importance since vector dispersion is one of the major factors responsible for pathogen dissemination. In total, 650 sandflies were captured between June and August 2015 using sticky paper traps in the governorate of Sidi Bouzid, a classical focus of L. major in the Central-West of Tunisia. Polymerase chain reaction-restriction fragment length polymorphism analysis of the internal transcribed spacer 1 and sequencing were used for Leishmania detection and identification. Ninety-seven unfed females were tested for the presence of Leishmania parasite DNA. Six Phlebotomus sergenti were found positive for L. tropica. This finding enhances the understanding of the cycle extension of L. tropica outside its original focus of Tataouine in the South-East of the country.Keywords: cutaneous leishmaniasis, Leishmania tropica, sandflies, Tunisia
Procedia PDF Downloads 156518 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways
Authors: Anirudh Lahiri
Abstract:
Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.
Procedia PDF Downloads 43517 Performance Analysis of Routing Protocols for WLAN Based Wireless Sensor Networks (WSNs)
Authors: Noman Shabbir, Roheel Nawaz, Muhammad N. Iqbal, Junaid Zafar
Abstract:
This paper focuses on the performance evaluation of routing protocols in WLAN based Wireless Sensor Networks (WSNs). A comparative analysis of routing protocols such as Ad-hoc On-demand Distance Vector Routing System (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) is been made against different network parameters like network load, end to end delay and throughput in small, medium and large-scale sensor network scenarios to identify the best performing protocol. Simulation results indicate that OLSR gives minimum network load in all three scenarios while AODV gives the best throughput in small scale network but in medium and large scale networks, DSR is better. In terms of delay, OLSR is more efficient in small and medium scale network while AODV is slightly better in large networks.Keywords: WLAN, WSN, AODV, DSR, OLSR
Procedia PDF Downloads 448516 Performance Comparison of AODV and Soft AODV Routing Protocol
Authors: Abhishek, Seema Devi, Jyoti Ohri
Abstract:
A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, truetime
Procedia PDF Downloads 498515 The Research of Industrial Space Characteristics, Layout, and Strategy in Metropolitan Area in China: In Case of Wuhan
Authors: Min Zhou, Kaixuan Lin, Yaping Huang
Abstract:
In this paper, the industrial space of metropolitan area in Wuhan is taken as a sample. First of all, it puts forward that the structure of service economy, circle gradient relocation and high degree of regional collaboration are the rules of industrial spatial development in the modern world cities. Secondly, using the economic statistics and land use vector data (1993, 2004, 2010, and 2013) of Wuhan, it analyzes the present situation of industry development and the characteristics of industrial space layout from three aspects of the industrial economic structure, industrial layout, and industrial regional synergy. Then, based on the industrial development regularity of world cities, it puts forward to construct the industrial spatial level of ‘complex industrial concentration area + modular industry unit’ and the industrial spatial structure of ‘13525’. Finally, it comes up with the optimization tactics of the industrial space’s transformation in the future under the background of new economic era.Keywords: big city of metropolitan area, industrial space, characteristics, layout, strategy
Procedia PDF Downloads 378514 Spatial Conceptualization in French and Italian Speakers: A Contrastive Approach in the Context of the Linguistic Relativity Theory
Authors: Camilla Simoncelli
Abstract:
The connection between language and cognition has been one of the main interests of linguistics from several years. According to the Sapir-Whorf Linguistic Relativity Theory, the way we perceive reality depends on the language we speak which in turn has a central role in the human cognition. This paper is in line with this research work with the aim of analyzing how language structures reflect on our cognitive abilities even in the description of space, which is generally considered as a human natural and universal domain. The main objective is to identify the differences in the encoding of spatial inclusion relationships in French and Italian speakers to make evidence that a significant variation exists at various levels even in two similar systems. Starting from the constitution a corpora, the first step of the study has been to establish the relevant complex prepositions marking an inclusion relation in French and Italian: au centre de, au cœur de, au milieu de, au sein de, à l'intérieur de and the opposition entre/parmi in French; al centro di, al cuore di, nel mezzo di, in seno a, all'interno di and the fra/tra contrast in Italian. These prepositions had been classified on the base of the type of Noun following them (e.g. mass nouns, concrete nouns, abstract nouns, body-parts noun, etc.) following the Collostructional Analysis of lexemes with the purpose of analyzing the preferred construction of each preposition comparing the relations construed. Comparing the Italian and the French results it has been possible to define the degree of representativeness of each target Noun for the chosen preposition studied. Lexicostatistics and Statistical Association Measures showed the values of attraction or repulsion between lexemes and a given preposition, highlighting which words are over-represented or under-represented in a specific context compared to the expected results. For instance, a Noun as Dibattiti has a negative value for the Italian Al cuore di (-1,91), but it has a strong positive representativeness for the corresponding French Au cœur de (+677,76). The value, positive or negative, is the result of a hypergeometric distribution law which displays the current use of some relevant nouns in relations of spatial inclusion by French and Italian speakers. Differences on the kind of location conceptualization denote syntactic and semantic constraints based on spatial features as well as on linguistic peculiarity, too. The aim of this paper is to demonstrate that the domain of spatial relations is basic to human experience and is linked to universally shared perceptual mechanisms which create mental representations depending on the language use. Therefore, linguistic coding strongly correlates with the way spatial distinctions are conceptualized for non-verbal tasks even in close language systems, like Italian and French.Keywords: cognitive semantics, cross-linguistic variations, locational terms, non-verbal spatial representations
Procedia PDF Downloads 113513 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 121512 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 286511 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 14510 Scalar Modulation Technique for Six-Phase Matrix Converter Fed Series-Connected Two-Motor Drives
Authors: A. Djahbar, M. Aillerie, E. Bounadja
Abstract:
In this paper we treat a new structure of a high-power actuator which is used to either industry or electric traction. Indeed, the actuator is constituted by two induction motors, the first is a six-phase motor connected in series with another three-phase motor via the stators. The whole is supplied by a single static converter. Our contribution in this paper is the optimization of the system supply source. This is feeding the multimotor group by a direct converter frequency without using the DC-link capacitor. The modelling of the components of multimotor system is presented first. Only the first component of stator currents is used to produce the torque/flux of the first machine in the group. The second component of stator currents is considered as additional degrees of freedom and which can be used for power conversion for the other connected motors. The decoupling of each motor from the group is obtained using the direct vector control scheme. Simulation results demonstrate the effectiveness of the proposed structure.Keywords: induction machine, motor drives, scalar modulation technique, three-to-six phase matrix converter
Procedia PDF Downloads 548509 Use of Progressive Feedback for Improving Team Skills and Fair Marking of Group Tasks
Authors: Shaleeza Sohail
Abstract:
Self, and peer evaluations are some of the main components in almost all group assignments and projects in higher education institutes. These evaluations provide students an opportunity to better understand the learning outcomes of the assignment and/or project. A number of online systems have been developed for this purpose that provides automated assessment and feedback of students’ contribution in a group environment based on self and peer evaluations. All these systems lack a progressive aspect of these assessments and feedbacks which is the most crucial factor for ongoing improvement and life-long learning. In addition, a number of assignments and projects are designed in a manner that smaller or initial assessment components lead to a final assignment or project. In such cases, the evaluation and feedback may provide students an insight into their performance as a group member for a particular component after the submission. Ideally, it should also create an opportunity to improve for next assessment component as well. Self and Peer Progressive Assessment and Feedback System encourages students to perform better in the next assessment by providing a comparative analysis of the individual’s contribution score on an ongoing basis. Hence, the student sees the change in their own contribution scores during the complete project based on smaller assessment components. Self-Assessment Factor is calculated as an indicator of how close the self-perception of the student’s own contribution is to the perceived contribution of that student by other members of the group. Peer-Assessment Factor is calculated to compare the perception of one student’s contribution as compared to the average value of the group. Our system also provides a Group Coherence Factor which shows collectively how group members contribute to the final submission. This feedback is provided for students and teachers to visualize the consistency of members’ contribution perceived by its group members. Teachers can use these factors to judge the individual contributions of the group members in the combined tasks and allocate marks/grades accordingly. This factor is shown to students for all groups undertaking same assessment, so the group members can comparatively analyze the efficiency of their group as compared to other groups. Our System provides flexibility to the instructors for generating their own customized criteria for self and peer evaluations based on the requirements of the assignment. Students evaluate their own and other group members’ contributions on the scale from significantly higher to significantly lower. The preliminary testing of the prototype system is done with a set of predefined cases to explicitly show the relation of system feedback factors to the case studies. The results show that such progressive feedback to students can be used to motivate self-improvement and enhanced team skills. The comparative group coherence can promote a better understanding of the group dynamics in order to improve team unity and fair division of team tasks.Keywords: effective group work, improvement of team skills, progressive feedback, self and peer assessment system
Procedia PDF Downloads 187