Search results for: continuous data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26680

Search results for: continuous data

26020 Modeling of Gas Migration in High-Pressure–High-Temperature Fields

Authors: Deane Roehl, Roberto Quevedo

Abstract:

Gas migration from pressurized formations is a problem reported in the oil and gas industry. This means increased risks for drilling, production, well integrity, and hydrocarbon escape. Different processes can contribute to the development of pressurized formations, particularly in High-Pressure–High-Temperature (HPHT) gas fields. Over geological time-scales, the different formations of those fields have maintained and/or developed abnormal pressures owing to low permeability and the presence of an impermeable seal. However, if this seal is broken, large volumes of gas could migrate into other less pressurized formations. Three main mechanisms for gas migration have been identified in the literature –molecular diffusion, continuous-phase flow, and continuous-phase flow coupled with mechanical effects. In relation to the latter, gas migration can occur as a consequence of the mechanical effects triggered by reservoir depletion. The compaction of the reservoir can redistribute the in-situ stresses sufficiently to induce deformations that may increase the permeability of rocks and lead to fracture processes or reactivate nearby faults. The understanding of gas flow through discontinuities is still under development. However, some models based on porosity changes and fracture aperture have been developed in order to obtain enhanced permeabilities in numerical simulations. In this work, a simple relationship to integrate fluid flow through rock matrix and discontinuities has been implemented in a fully thermo-hydro-mechanical simulator developed in-house. Numerical simulations of hydrocarbon production in an HPHT field were carried out. Results suggest that rock permeability can be considerably affected by the deformation of the field, creating preferential flow paths for the transport of large volumes of gas.

Keywords: gas migration, pressurized formations, fractured rocks, numerical modeling

Procedia PDF Downloads 148
26019 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
26018 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security

Procedia PDF Downloads 335
26017 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital

Authors: A. Wahid Uddin

Abstract:

Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.

Keywords: dilator, induction, labour, osmotic

Procedia PDF Downloads 138
26016 Wellbore Spiraling Induced through Systematic Micro-Sliding

Authors: Christopher Viens, Bosko Gajic, Steve Krase

Abstract:

Stick-Slip is a term that is often overused and commonly diagnosed from surface drilling parameters of torque and differential pressure, but the actual magnitude of the condition is rarely captured at the BHA level as the necessary measurements are seldom deployed. Deployment of an accurate stick-slip measurement downhole has led to an interesting discovery that goes against long held traditional drilling lore. A divide has been identified between stick-slip as independent bit and BHA conditions. This phenomenon in horizontal laterals is common, but few M/LWD systems have been able to capture it. Utilizing measurements of downhole RPM bore pressure, high-speed magnetometer data, bending moment, and continuous inclination, the wellbore spiraling phenomenon is able to be captured, quantified, and intimately tied back to systematic effects of BHA stalling and micro-sliding. An operator in the Permian Basin has identified that this phenomenon is contributing to increased tortuosity and drag. Utilizing downhole torque measurements the root causes of the stick-slip and spiraling phenomenon were identified and able to engineered out of the system.

Keywords: bending moment, downhole dynamics measurements, micro sliding, wellbore spiraling

Procedia PDF Downloads 252
26015 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 174
26014 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 225
26013 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges

Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh

Abstract:

For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.

Keywords: guideline, law, data protection officer, personal data

Procedia PDF Downloads 78
26012 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings

Authors: Annette Cosgrove

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, DTL, digital teaching, digital assessment

Procedia PDF Downloads 70
26011 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.

Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies

Procedia PDF Downloads 108
26010 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 545
26009 Mediation in Criminal Matters: A Perspective from Kosovo

Authors: Flutura Tahiraj, Emine Abdyli

Abstract:

As a new alternative, mediation is integrated in the legislation of both developed and developing countries in Europe. Various researches in member states of the Council of Europe revealed obstacles, particularly related to the implementation of mediation in criminal matters. They are addressed through several recommendations and non-binding guidelines. However, there is limited empirical research on how the mediation in criminal matters is being implemented in the contexts of developing countries in South-Eastern Europe. Hence, the purpose of this qualitative study is to assess mediation in criminal matters in Kosovo by exploring how the main stakeholders describe the legal basis and implementation process and what it indicates for future practices. The data were gathered through 11 semi-structured interviews with judges, prosecutors, mediation clerks and mediators. Results show that laws and other guidelines that have been introduced since 2008 constitute a solid legal ground that facilitates mediation in criminal matters. The stakeholders are well aware of benefits mediation brings and express their willingness to advance its application to criminal matters. Results also indicate uncertainty among judges and prosecutors regarding the assessment and referral of certain criminal offences to mediation. To address it, specialized trainings, exchange programs and continuous monitoring and evaluation of the process could be supportive.

Keywords: mediation in criminal matters, legislation, implementation of mediation

Procedia PDF Downloads 37
26008 Towards an Environmental Knowledge System in Water Management

Authors: Mareike Dornhoefer, Madjid Fathi

Abstract:

Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.

Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management

Procedia PDF Downloads 220
26007 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
26006 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications

Authors: Shahadut Hossain

Abstract:

Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.

Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment

Procedia PDF Downloads 408
26005 Effect of Modification and Expansion on Emergence of Cooperation in Demographic Multi-Level Donor-Recipient Game

Authors: Tsuneyuki Namekata, Yoko Namekata

Abstract:

It is known that the mean investment evolves from a very low initial value to some high level in the Continuous Prisoner's Dilemma. We examine how the cooperation level evolves from a low initial level to a high level in our Demographic Multi-level Donor-Recipient situation. In the Multi-level Donor-Recipient game, one player is selected as a Donor and the other as a Recipient randomly. The Donor has multiple cooperative moves and one defective move. A cooperative move means the Donor pays some cost for the Recipient to receive some benefit. The more cooperative move the Donor takes, the higher cost the Donor pays and the higher benefit the Recipient receives. The defective move has no effect on them. Two consecutive Multi-level Donor-Recipient games, one as a Donor and the other as a Recipient, can be viewed as a discrete version of the Continuous Prisoner's Dilemma. In the Demographic Multi-level Donor-Recipient game, players are initially distributed spatially. In each period, players play multiple Multi-level Donor-Recipient games against other players. He leaves offspring if possible and dies because of negative accumulated payoff of him or his lifespan. Cooperative moves are necessary for the survival of the whole population. There is only a low level of cooperative move besides the defective move initially available in strategies of players. A player may modify and expand his strategy by his recent experiences or practices. We distinguish several types of a player about modification and expansion. We show, by Agent-Based Simulation, that introducing only the modification increases the emergence rate of cooperation and introducing both the modification and the expansion further increases it and a high level of cooperation does emerge in our Demographic Multi-level Donor-Recipient Game.

Keywords: agent-based simulation, donor-recipient game, emergence of cooperation, spatial structure, TFT, TF2T

Procedia PDF Downloads 370
26004 Factors Affecting Entrepreneurial Behavior and Performance of Youth Entrepreneurs in Malaysia

Authors: Mohd Najib Mansor, Nur Syamilah Md. Noor, Abdul Rahim Anuar, Shazida Jan Mohd Khan, Ahmad Zubir Ibrahim, Badariah Hj Din, Abu Sufian Abu Bakar, Kalsom Kayat, Wan Nurmahfuzah Jannah Wan Mansor

Abstract:

This study aimed and focused on the behavior of youth entrepreneurs’ especially entrepreneurial self-efficacy and the performance in micro SMEs in Malaysia. Entrepreneurship development calls for support from various quarters, and mostly the need exists to initiate a youth entrepreneurship culture and drive amongst the youth in the society. Although backed up by the government and non-government organizations, micro-entrepreneurs are still facing challenges which greatly delay their progress, growth and consequently their input towards economic advancement. Micro-entrepreneurs are confronted with unique difficulties such as uncertainty, innovation, and evolution. Reviews on the development of entrepreneurial characteristics such as need for achievement, internal locus of control, risk-taking and innovation and have been recognized as highly associated with entrepreneurial behavior. The data in this study was obtained from the Department of Statistics, Malaysia. A random sampling of 830 respondents was distributed to 14 states that involve of micro-entrepreneurs. The study adopted a quantitative approach whereby a set of questionnaire was used to gather data. Multiple regression analysis was chosen as a method of analysis testing. The result of this study is expected to provide insight into the factor affecting entrepreneurial behavior and performance of youth entrepreneurs in micro SMEs. The finding showed that the Malaysian youth entrepreneurs do not have the entrepreneurial self-efficacy within themselves in order to accomplish greater success in their business venture. The establishment of entrepreneurial schools to allow our youth to be exposed to entrepreneurship from an early age and the development of special training focuses on the creation of business network so that the continuous entrepreneurial culture is crafted.

Keywords: youth entrepreneurs, micro entrepreneurs, entrepreneurial self-efficacy, entrepreneurial performance

Procedia PDF Downloads 300
26003 The Utilization of Big Data in Knowledge Management Creation

Authors: Daniel Brian Thompson, Subarmaniam Kannan

Abstract:

The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.

Keywords: big data, knowledge management, data driven, knowledge creation

Procedia PDF Downloads 116
26002 ISO 9001:2008 Effectiveness on the Performance of Public Organizations in Oman

Authors: Said Rashid Aal Abdulsallam

Abstract:

The purpose of this paper is to measure ISO 9001:2008 effectiveness and determines its impact on the performance dimensions in terms of service quality, operational performance and customer satisfaction from the perspectives of both service providers and receivers. The paper is based on an empirical study carried out on all the ISO 9001:2008 certified departments in the Ministry of Education in the Sultanate of Oman. Data were obtained from the certified departments and their equivalent clients through two structured online questionnaires. Exploratory factor analyses are applied to extract the underlying factors of the indicators of ISO 9001 objectives and performance dimensions. Multiple linear regression analyses are also applied in order to determine the impact of ISO 9001 effectiveness on the performance dimensions of the certified departments. The study sample includes all the ISO 9001 certified departments in the Ministry of Education. The study instruments used target both the service providers as well as the service receivers with the purpose of alleviating the subjective nature of the data collected from the service providers who may be biased in favour of ISO 9001 quality management system or their performance. The findings of the study verify the effectiveness of the application of ISO 9001:2008 quality management system. Additionally, the study reveals that the ISO 9001 certified departments have achieved the ISO 9001 the standard's objectives including prevention of nonconformities, continuous improvement and customer satisfaction focus at different rates. The study also proves that there is a significant relation between the achievement of the ISO 9001 standard objectives and the operational performance of the departments. Even though the operational performance service quality of the ISO 9001 certified departments has substantially improved from the perspective of the departments, the customer satisfaction has not notably increased from the perspective of the service receivers.

Keywords: iso 9001, customer satisfaction, operational performance, public organization, quality management

Procedia PDF Downloads 402
26001 A Study of Emergency Nurses' Knowledge and Attitudes regarding Pain

Authors: Liqun Zou, Ling Wang, Xiaoli Chen

Abstract:

Objective: Through the questionnaire about emergency nurses’ knowledge and attitudes regarding pain management to understand whether they are well mastered and practiced the related knowledge about pain management, providing a reference for continuous improvement of the quality of nursing care in acute pain and for improving the effect of management on emergency pain patients. Method: The Chinese version questionnaire about KASRP (knowledge and attitudes survey regarding pain) was handed out to 132 emergency nurses to do a study about the knowledge and attitude of pain management. Meanwhile, SPSS17.0 was used to do a descriptive analysis and variance analysis on collected data. Results: The emergency nurses’ correct answer rate about KASRP questionnaire is from 25% to 65% and the average correct rate is (44.65 + 7.85)%. In addition, there are 10 to 26 items being given the right answer. Therefore, the average correct items are (17.86 ± 3.14). Moreover, there is no statistical significant on the differences about the correct rate for different age, gender and work experience to answer; however, the difference of the correct rate in different education background and the professional title is significant. Conclusion: There is a remarkable lack of knowledge and attitude towards pain management in emergency nurses, whose basic knowledge of pain is sufficient. Besides, there is a deviation between the knowledge of pain management and clinical practice, which needs to be improved.

Keywords: emergency nurse, pain, KASRP questionnaire, pain management

Procedia PDF Downloads 251
26000 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya

Authors: Masese Chuma Benard, Martin Onsiro Ronald

Abstract:

Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.

Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)

Procedia PDF Downloads 84
25999 Cloud Design for Storing Large Amount of Data

Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás

Abstract:

Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.

Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization

Procedia PDF Downloads 352
25998 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 382
25997 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 160
25996 Scope of Rainwater Harvesting in Residential Plots of Dhaka City

Authors: Jubaida Gulshan Ara, Zebun Nasreen Ahmed

Abstract:

Urban flood and drought has been a major problem of Dhaka city, particularly in recent years. Continuous increase of the city built up area, and limiting rainwater infiltration zone, are thought to be the main causes of the problem. Proper rainwater management, even at the individual plot level, might bring significant improvement in this regard. As residential use pattern occupies a significant portion of the city surface, the scope of rainwater harvesting (RWH) in residential buildings can be investigated. This paper reports on a research which explored the scope of rainwater harvesting in residential plots, with multifamily apartment buildings, in Dhaka city. The research investigated the basics of RWH, contextual information, i.e., hydro-geological, meteorological data of Dhaka city and the rules and legislations for residential building construction. The study also explored contemporary rainwater harvesting practices in the local and international contexts. On the basis of theoretical understanding, 21 sample case-studies, in different phases of construction, were selected from seven different categories of plot sizes, in different residential areas of Dhaka city. Primary data from the 21 case-study buildings were collected from a physical survey, from design drawings, accompanied by a questionnaire survey. All necessary secondary data were gathered from published and other relevant sources. Collected primary and secondary data were used to calculate and analyze the RWH needs for each case study, based on the theoretical understanding. The main findings have been compiled and compared, to observe residential development trends with regards to building rainwater harvesting system. The study has found that, in ‘Multifamily Apartment Building’ of Dhaka city, storage, and recharge structure size for rainwater harvesting, increases along with occupants’ number, and with the increasing size of the plot. Hence, demand vs. supply ratio remains almost the same for different sizes of plots, and consequently, the size of the storage structure increases significantly, in large-scale plots. It has been found that rainwater can meet only 12%-30% of the total restricted water demand of these residential buildings of Dhaka city. Therefore, artificial groundwater recharge might be the more suitable option for RWH, than storage. The study came up with this conclusion that, in multifamily residential apartments of Dhaka city, artificial groundwater recharge might be the more suitable option for RWH, than storing the rainwater on site.

Keywords: Dhaka city, rainwater harvesting, residential plots, urban flood

Procedia PDF Downloads 194
25995 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis

Procedia PDF Downloads 383
25994 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 93
25993 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia

Authors: Melaku Tsehay

Abstract:

The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.

Keywords: data quality, immunization, verification factor, pastoralist region

Procedia PDF Downloads 123
25992 Exploring Subjective Attitudes towards Public Transport of Intercity Travel and Their Relationships

Authors: Jiaqi Zhang, Zhi Dong, Pan Xing

Abstract:

With the continuous development of urban agglomerations, higher demands are placed on intercity public transport travel services. To improve these services, it is necessary to comprehensively understand the views and evaluations of travelers. Taking the Guanzhong Plain urban agglomeration in China as the object, this study explores subjective attitude indicators from self-administrated survey data and examines the relationship among perceived accessibility, preference, and satisfaction for intercity public transport using a structural equation model. The results show that perceived service quality has a direct positive impact on perceived accessibility and satisfaction. Perceived accessibility and preference significantly affect satisfaction. In addition, perceived accessibility mediates the effect of service quality on satisfaction. This study provides valuable insights from a policy perspective to improve the subjective evaluation of intercity public transport travelers while emphasizing the importance of subjective variables in transport system evaluation and advocates for their subdivision to more comprehensively improve the travel experience.

Keywords: intercity public transport, perceived accessibility, satisfaction, structural equation model

Procedia PDF Downloads 104
25991 Elastomeric Nanocomposites for Space Applications

Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila

Abstract:

Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.

Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties

Procedia PDF Downloads 288