Search results for: clinical decision support systems
20333 Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Babak Nemat
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2023, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to exercise in future research.Keywords: social support, regulation, infertility, women
Procedia PDF Downloads 6520332 Design of Knowledge Management System with Geographic Information System
Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan
Abstract:
Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.Keywords: 5C4C, data, information, knowledge
Procedia PDF Downloads 46320331 The Impact of Centralisation on Radical Prostatectomy Outcomes: Our Outcomes
Authors: Jemini Vyas, Oluwatobi Adeyoe, Jenny Branagan, Chandran Tanabalan, John Beatty, Aakash Pai
Abstract:
Introduction: The development of robotic surgery has accelerated centralisation to tertiary centres, where robotic radical prostatectomy (RP) is offered. The purpose of concentrating treatment in high volume specialist centres is to improve the quality of care and patient outcomes. The aim of this study was to assess the impact on clinical outcomes of centralisation for locally diagnosed patients undergoing RP. Methods: Clinical outcomes for 169 consecutive laparoscopic & open RP pre-centralisation were retrospectively compared with 50 consecutive robotic RP conducted over a similar period post-centralisation. Preoperative risk stratification and time to surgery were collected. Perioperative outcomes, including length of stay (LOS) and complications, were collated. Post-operative outcomes, including erectile dysfunction (ED), biochemical recurrence (BCR), and urinary continence, were assessed. Results: Preoperative risk stratification showed no difference between the two groups. The median time from diagnosis to treatment was similar between the two groups (pre-centralisation, 121 days, post-centralisation, 117 days). The mean length of stay (pre-centralisation, 2.1 days, post-centralisation, 1.6 days) showed no significant difference (p=0.073). Proportion of overall complications (pre-centralisation, 11.4%, post-centralisation, 8.7%) and complications, above Clavien-Dindo 2, were similar between the two groups (pre-centralisation1.2%, post-centralisation 2.2%). Post operative functional parameters, including continence and ED, were comparable. Five-year BCR free rate was 78% for the pre-centralisation group and 79% for the post centralisation group. Conclusion: For our cohort of patients, clinical outcomes have remained static during centralisation. It is imperative that centralisation is accompanied by increased capacity, streamlining of pathways, and training to ensure that improved quality of care is achieved. Our institution has newly acquired a robot, and prospectively studying this data may support the reversal of centralisation for RP surgery.Keywords: prostate, cancer, prostatectomy, clinical
Procedia PDF Downloads 9520330 Amazon and Its AI Features
Authors: Leen Sulaimani, Maryam Hafiz, Naba Ali, Roba Alsharif
Abstract:
One of Amazon’s most crucial online systems is artificial intelligence. Amazon would not have a worldwide successful online store, an easy and secure way of payment, and other services if it weren’t for artificial intelligence and machine learning. Amazon uses AI to expand its operations and enhance them by upgrading the website daily; having a strong base of artificial intelligence in a worldwide successful business can improve marketing, decision-making, feedback, and more qualities. Aiming to have a rational AI system in one’s business should be the start of any process; that is why Amazon is fortunate that they keep taking care of the base of their business by using modern artificial intelligence, making sure that it is stable, reaching their organizational goals, and will continue to thrive more each and every day. Artificial intelligence is used daily in our current world and is still being amplified more each day to reach consumer satisfaction and company short and long-term goals.Keywords: artificial intelligence, Amazon, business, customer, decision making
Procedia PDF Downloads 11020329 Factors Influencing the Decision of International Tourists to Revisit Bangkok,Thailand
Authors: Taksina Bunbut, Kevin Wongleedee
Abstract:
The purposes of this research were to study factors influencing the decision of international tourists to revisit Bangkok, Thailand. A random 200 samples was collected. Half the sample group was male and the other half was female. A questionnaire was used to collect data and small in-depth interviews were also used to get their opinions about importance of tourist decision making factors. The findings revealed that the majority of respondents rated these factors at medium level of importance. The ranking showed that the first three important factors were a safe place to stay, friendly people, and clean food. The three least important factors were a convenience transportation, clean country, and child friendly. In addition there was no significance difference between male and female in their ratings of the factors of influencing the decision of international tourists to revisit Bangkok, Thailand.Keywords: factors, international tourists, revisit, Thailand
Procedia PDF Downloads 32720328 Validation of Global Ratings in Clinical Performance Assessment
Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek
Abstract:
This study aimed to determine the reliability of clinical performance assessments, having been emphasized by ability-based education, and professors overall assessment methods. We addressed the following problems: First, we try to find out whether there is a difference in what we consider to be the main variables affecting the clinical performance test according to the evaluator’s working period and the number of evaluation experience. Second, we examined the relationship among the global rating score (G), analytic global rating score (Gc), and the sum of the analytical checklists (C). What are the main factors affecting clinical performance assessments in relation to the numbers of times the evaluator had administered evaluations and the length of their working period service? What is the relationship between overall assessment score and analytic checklist score? How does analytic global rating with 6 components in OSCE and 4 components in sub-domains (Gc) CPX: aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude overall assessment score and task-specific analytic checklist score sum (C) affect the professor’s overall global rating assessment score (G)? We studied 75 professors who attended a 2016 Bugyeoung Consortium clinical skills performances test evaluating third and fourth year medical students at the Pusan National University Medical school in South Korea (39 prof. in OSCE, 36 prof. in CPX; all consented to participate in our study). Each evaluator used 3 forms; a task-specific analytic checklist, subsequent analytic global rating scale with sub-6 domains, and overall global scale. After the evaluation, the professors responded to the questionnaire on the important factors of clinical performance assessment. The data were analyzed by frequency analysis, correlation analysis, and hierarchical regression analysis using SPSS 21.0. Their understanding of overall assessment was analyzed by dividing the subjects into groups based on experiences. As a result, they considered ‘precision’ most important in overall OSCE assessment, and ‘precise accuracy physical examination’, ‘systemic approaches to taking patient history’, and ‘diagnostic skill capability’ in overall CPX assessment. For OSCE, there was no clear difference of opinion about the main factors, but there was for CPX. Analytic global rating scale score, overall rating scale score, and analytic checklist score had meaningful mutual correlations. According to the regression analysis results, task-specific checklist score sum had the greatest effect on overall global rating. professors regarded task-specific analytic checklist total score sum as best reflecting overall OSCE test score, followed by aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude on a subsequent analytic global rating scale. For CPX, subsequent analytic global rating scale score, overall global rating scale score, and task-specific checklist score had meaningful mutual correlations. These findings support explanations for validity of professors’ global rating in clinical performance assessment.Keywords: global rating, clinical performance assessment, medical education, analytic checklist
Procedia PDF Downloads 23520327 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 13320326 Survey on Resilience of Chinese Nursing Interns: A Cross-Sectional Study
Authors: Yutong Xu, Wanting Zhang, Jia Wang, Zihan Guo, Weiguang Ma
Abstract:
Background: The resilience education of intern nursing students has significant implications for the development and improvement of the nursing workforce. The clinical internship period is a critical time for enhancing resilience. Aims: To evaluate the resilience level of Chinese nursing interns and identify the factors affecting resilience early in their careers. Methods: The cross-sectional study design was adopted. From March 2022 to May 2023, 512 nursing interns in tertiary care hospitals were surveyed online with the Connor-Davidson Resilience Scale, the Clinical Learning Environment scale for Nurse, and the Career Adapt-Abilities Scale. Structural equation modeling was used to clarify the relationships among these factors. Indirect effects were tested using bootstrapped Confidence Intervals. Results: The nursing interns showed a moderately high level of resilience[M(SD)=70.15(19.90)]. Gender, scholastic attainment, had a scholarship, career adaptability and clinical learning environment were influencing factors of nursing interns’ resilience. Career adaptability and clinical learning environment positively and directly affected their resilience level (β = 0.58, 0.12, respectively, p<0.01). career adaptability also positively affected career adaptability (β = 0.26, p < 0.01), and played a fully mediating role in the relationship between clinical learning environment and resilience. Conclusion: Career adaptability can enhance the influence of clinical learning environment on resilience. The promotion of career adaptability and the clinical teaching environment should be the potential strategies for nursing interns to improve their resilience, especially for those female nursing interns with low academic performance. Implications for Nursing Educators Nursing educators should pay attention to the cultivation of nursing students' resilience; for example, by helping them integrate to the clinical learning environment and improving their career adaptability. Reporting Method: The STROBE criteria were used to report the results of the observations critically. Patient or Public Contribution No patient or public contribution.Keywords: resilience, clinical learning environment, career adaptability, nursing interns
Procedia PDF Downloads 9020325 Data Integrity: Challenges in Health Information Systems in South Africa
Authors: T. Thulare, M. Herselman, A. Botha
Abstract:
Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.Keywords: data integrity, data integrity challenges, hospital information systems, South Africa
Procedia PDF Downloads 18120324 SisGeo: Support System for the Research of Georeferenced Comparisons Applied to Professional and Academic Devices
Authors: Bruno D. Souza, Gerson G. Cunha, Michael O. Ferreira, Roberto Rosenhaim, Robson C. Santos, Sergio O. Santos
Abstract:
Devices and applications that use satellite-based positioning are becoming more popular day-by-day. Thus, evolution and improvement in this technology are mandatory. Accordingly, satellite georeferenced systems need to accomplish the same evolution rhythm. Either GPS (Global Positioning System) or its similar Russian GLONASS (Global Navigation Satellite System) are system samples that offer us powerful tools to plot coordinates on the earth surface. The development of this research aims the study of several aspects related to use of GPS and GLONASS technologies, given its application and collected data improvement during geodetic data acquisition. So, both relevant theoretic and practical aspects are considered. In this context, at the theoretical part, the main systems' characteristics are shown, observing its similarities and differences. At the practical part, a series of experiences are performed and obtained data packages are compared in order to demonstrate equivalence or differences among them. The evaluation methodology targets both quantitative and qualitative analysis provided by GPS and GPS/GLONASS receptors. Meanwhile, a specific collected data storage system was developed to better compare and analyze them (SisGeo - Georeferenced Research Comparison Support System).Keywords: satellites, systems, applications, experiments, receivers
Procedia PDF Downloads 25520323 HIS Integration Systems Using Modality Worklist and DICOM
Authors: Kulvinder Singh Mann
Abstract:
The usability and simulation of information systems, known as Hospital Information System (HIS), Radiology Information System (RIS), and Picture Archiving, Communication System, for electronic medical records has shown a good impact for actors in the hospital. The objective is to help and make their work easier; such as for a nurse or administration staff to record the medical records of the patient, and for a patient to check their bill transparently. However, several limitations still exists on such area regarding the type of data being stored in the system, ability for data transfer, storage and protocols to support communication between medical devices and digital images. This paper reports the simulation result of integrating several systems to cope with those limitations by using the Modality Worklist and DICOM standard. It succeeds in documenting the reason of that failure so future research will gain better understanding and be able to integrate those systems.Keywords: HIS, RIS, PACS, modality worklist, DICOM, digital images
Procedia PDF Downloads 31720322 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists
Authors: Sakul Jariyachansit
Abstract:
The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.Keywords: factor, decision making, ASEAN tourists, tourism in Thailand
Procedia PDF Downloads 20620321 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare
Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon
Abstract:
This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty
Procedia PDF Downloads 35720320 Audit on the Use of T-MACS Decision Aid for Patients Presenting to ED with Chest Pain
Authors: Saurav Dhawan, Sanchit Bansal
Abstract:
Background T-MACS is a computer-based decision aid that ‘rules in’ and ‘rules out’ ACS using a combination of the presence or absence of six clinical features with only one biomarker measured on arrival: hs-cTnT. T-MACS had 99.3% negative predictive value and 98.7% sensitivity for ACS, ‘ruling out’ ACS in 40% of patients while ‘ruling in’ 5% at the highest risk. We aim at benchmarking the use of T-MACS which could help to conserve healthcare resources, facilitate early discharges, and ensure safe practice. Methodology Randomized retrospective data collection (n=300) was done from ED electronic records across 3 hospital sites within MFT over a period of 2 months. Data was analysed and compared by percentage for the usage of T-MACS, number of admissions/discharges, and in days for length of stay in hospital. Results MRI A&E had the maximum compliance with the use of T-MACS in the trust at 66%, with minimum admissions (44%) and an average length of stay of 1.825 days. NMG A&E had an extremely low compliance rate (8 %), with 75% admission and 3.387 days as the average length of stay. WYT A&E had no TMACS recorded, with a maximum of 79% admissions and the longest average length of stay at 5.07 days. Conclusion All three hospital sites had a RAG rating of ‘RED’ as per the compliance levels. The assurance level was calculated as ‘Very Limited’ across all sites. There was a positive correlation observed between compliance with TMACS and direct discharges from ED, thereby reducing the average length of stay for patients in the hospital.Keywords: ACS, discharges, ED, T-MACS
Procedia PDF Downloads 5920319 Event Monitoring Based On Web Services for Heterogeneous Event Sources
Authors: Arne Koschel
Abstract:
This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.Keywords: event monitoring, ECA, CEP, SOA, web services
Procedia PDF Downloads 74620318 Social Media, Networks and Related Technology: Business and Governance Perspectives
Authors: M. A. T. AlSudairi, T. G. K. Vasista
Abstract:
The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks
Procedia PDF Downloads 45220317 Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS
Authors: Noor Attar
Abstract:
This paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of people living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones.Keywords: HIV/AIDS, Saudi Arabia, social support, stigma communication
Procedia PDF Downloads 28520316 Between the Pen and the Dish Towel: Paradox of Globalization
Authors: Sandra Maria Cerqueira Da Silva
Abstract:
In Brazil, women are the majority of the country's population. They have advanced in terms of years of education and professional training. However, this has not prevented the differences in the labor market from being sustained, particularly the wage gap and inequalities concerning the access to command positions and promotions, i.e., in the gender relations and treatment. One of the conditions which constitute a barrier to career advancement is the necessary support chain to support women when they are in the labor market. Therefore, the purpose of this research is to demonstrate, describe, and criticize some of the current conformations of support chains and how these compete to promote the phenomenon known as glass ceiling in the country. However, this support may come even from inside a woman's own home, with a fairer division of household activities between men and women. Such behavior can free an entire network of women within the same family. In addition, it can serve as pressure to structure better conditions for women as a whole, improving the living conditions of the poor population. This can occur through programs and projects for qualification and retraining of adult women. In answer to the question that guides this study, it is concluded that a family support system is critical to the success of women in management positions. To meet this demand, one of the ways could be the development of specific gender policies by the public authorities, in accordance with the emerging global economic policies, in order to provide and structure the necessary support. This would respond to feminist manifestations - which should go on pointing needs – although the legislative assembly should also propose ideas to change this picture. This is a qualitative research, with a poststructuralist approach, featuring a cutout corpus of three interviews carried out with women holding leadership positions in the academia. Questions related to this very discussion are many. New studies could address points as the promotion of qualification and expansion of skills of women in subaltern condition. There is also need to investigate possible support systems, considering the inequalities and local economic conditions.Keywords: gender and labor market, glass ceiling, post-structuralism, support chain
Procedia PDF Downloads 23420315 Teacher Support and Academic Resilience in Vietnam: An Analysis of Low Socio-Economic Status Students in Programme for International Student Assessment 2018
Authors: My Ha, Suwei Lin, Huiying Zou
Abstract:
This study aimed at investigating the association between teacher support and academic resilience in a developing country. Using the data from PISA 2018 Student Questionnaire and Cognitive Tests, the study provided evidence of the significant impact teacher support had on reading literacy among 15-year-old students from low socio-economic status (SES) homes in Vietnam. From a total of 5773 Vietnamese participants from all backgrounds, a sample of 1765 disadvantaged students was drawn for analysis. As a result, 32 percent of the low SES sample was identified as resilient. Through their response to the PISA items regarding the frequency of support they received from teachers, the result of Latent Class Analysis (LCA) divides children into three subgroups: High Support (74.6%), Fair Support (21.6%), and Low Support (3.8%). The high support group reported the highest proportion of resilient students. Meanwhile, the low support group scored the lowest mean on reading test and had the lowest rate of resilience. Also, as the level of support increases, reading achievement becomes less dependent on socioeconomic status, reflected by the decrease in both the slope and magnitude of their correlation. Logistic regression revealed that 1 unit increase in standardized teacher support would lead to an increase of 29.1 percent in the odds of a student becoming resilient. The study emphasizes the role of supportive teachers in promoting resilience, as well as lowering educational inequity in general.Keywords: academic resilience, disadvantaged students, teacher support, inequity, PISA
Procedia PDF Downloads 9020314 Effects of Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Arezoo Fallahi
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2020, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to do exercise in future research.Keywords: social support, regulation, infertility, women, exercise
Procedia PDF Downloads 9420313 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach
Authors: Alma Sobrevilla
Abstract:
Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.Keywords: women, decision-making power, intrahousehold, Mexico
Procedia PDF Downloads 35420312 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 13920311 Role of Social Support in Drug Cessation among Male Addicts in the West of Iran
Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh, Fazel Zinat Motlagh
Abstract:
Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial.Keywords: drug cessation, family support, drug use, initiation age
Procedia PDF Downloads 55120310 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 8420309 Patient Service Improvement in Public Emergency Department Using Discrete Event Simulation
Authors: Dana Mohammed, Fatemah Abdullah, Hawraa Ali, Najat Al-Shaer, Rawan Al-Awadhi, , Magdy Helal
Abstract:
We study the patient service performance at the emergency department of a major Kuwaiti public hospital, using discrete simulation and lean concepts. In addition to the common problems in such health care systems (over crowdedness, facilities planning and usage, scheduling and staffing, capacity planning) the emergency department suffered from several cultural and patient behavioural issues. Those contributed significantly to the system problems and constituted major obstacles in maintaining the performance in control. This led to overly long waiting times and the potential of delaying providing help to critical cases. We utilized the visual management tools to mitigate the impact of the patients’ behaviours and attitudes and improve the logistics inside the system. In addition a proposal is made to automate the date collection and communication within the department using RFID-based barcoding system. Discrete event simulation models were developed as decision support systems; to study the operational problems and assess achieved improvements. The simulation analysis resulted in cutting the patient delays to about 35% of their current values by reallocating and rescheduling the medical staff. Combined with the application of the visual management concepts, this provided the basis to improving patient service without any major investments.Keywords: simulation, visual management, health care system, patient
Procedia PDF Downloads 47620308 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49120307 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies
Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr
Abstract:
Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool
Procedia PDF Downloads 23220306 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 11920305 Sudan’s Approach to Knowledge Management in Disaster Management
Authors: Mohamed Abdalla Elamein Boshara, Peter Charles Woods, Nour Eldin Mohamed Elshaiekh
Abstract:
Knowledge Management has become very important for Disaster Management response and planning. This paper proposes the implementation of a Knowledge Management System with a sustainable data collection mechanism for reliable and timely information management to support decision makers in making the right decisions in the timely manner.Keywords: knowledge management, disaster management, incident tracking, web application
Procedia PDF Downloads 78220304 Cost Effectiveness Analysis of a Community Intervention for Anti-Retroviral Therapy Delivery in Cambodia
Authors: Esabelle Lo Yan Yam, Pheak Chhoun, Sovannary Tuot, Emily Lancsar, Siyan Yi
Abstract:
Persons living with HIV (PLHIV) need lifelong antiretroviral treatment (ART) to keep their viral load suppressed to an undetectable level, maintain a healthy immune system, and reduce the risk of transmitting HIV to others. However, many factors affect PLHIV's adherence to ART, including access to antiretrovirals (ARV), stigma, lack of social support, and the burden of seeking lifelong care. Community-based care has been shown to be instrumental in the experience of PLHIV in many countries, including Cambodia. In this study based in Cambodia, a community-based ART delivery (CAD) intervention involving community action workers (CAWs) who are PLHIVs was introduced. These workers collect pre-packaged ARVs from the ART clinics and dispense them to PLHIVs in the communities. The quasi-experimental study involved approximately 2000 stable PLHIV in the intervention arm and another 2000 PLHIV in the control arm (receiving usual care). A cost-effectiveness analysis is currently conducted to complement the clinical effectiveness of the CAD intervention on the care continuum and treatment outcomes for stable PLHIV, as well as the operational effectiveness in increasing the efficiency of the ART clinics and the health system. The analysis will consider health system and societal perspectives based on primary outcomes, including retention in care, viral load suppression, and adherence to ART. Additionally, a consultation with the National Centre for HIV/AIDS, Dermatology, and STD under the Cambodia Ministry of Health will be done to discuss the conduct of a budget impact analysis that can quantify the financial impact on the government's budget when adopting the CAD intervention at the provincial and national levels. The budget impact analysis will take into consideration various scaling-up scenarios for the interventions in the country. The research will assess the cost-effectiveness of the CAD intervention to support national stakeholders in Cambodia to make an informed decision on the adoption and scaling up of the intervention in Cambodia. The results are currently being analyzed and will be available at the time of the conference.Keywords: Cambodia, community intervention, economic evaluation, global health, HIV/AIDs, implementation research
Procedia PDF Downloads 48