Search results for: bio hydrogen production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8130

Search results for: bio hydrogen production

7470 Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor

Authors: J. Sharon Mano Pappu, Sathyanarayana N. Gummadi

Abstract:

Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways.

Keywords: co-substrate, cybernetic model, diauxic growth, xylose, xylitol

Procedia PDF Downloads 328
7469 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
7468 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria

Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu

Abstract:

The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.

Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic

Procedia PDF Downloads 445
7467 Aggregate Fluctuations and the Global Network of Input-Output Linkages

Authors: Alexander Hempfing

Abstract:

The desire to understand business cycle fluctuations, trade interdependencies and co-movement has a long tradition in economic thinking. From input-output economics to business cycle theory, researchers aimed to find appropriate answers from an empirical as well as a theoretical perspective. This paper empirically analyses how the production structure of the global economy and several states developed over time, what their distributional properties are and if there are network specific metrics that allow identifying structurally important nodes, on a global, national and sectoral scale. For this, the World Input-Output Database was used, and different statistical methods were applied. Empirical evidence is provided that the importance of the Eastern hemisphere in the global production network has increased significantly between 2000 and 2014. Moreover, it was possible to show that the sectoral eigenvector centrality indices on a global level are power-law distributed, providing evidence that specific national sectors exist which are more critical to the world economy than others while serving as a hub within the global production network. However, further findings suggest, that global production cannot be characterized as a scale-free network.

Keywords: economic integration, industrial organization, input-output economics, network economics, production networks

Procedia PDF Downloads 276
7466 High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production

Authors: V. M. Levshakov, N. A. Steshenkova, N. A. Nosyrev

Abstract:

Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”.

Keywords: flat sections, hybrid laser-arc welding, plasma welding, plasmatron

Procedia PDF Downloads 448
7465 Utilization of Sugar Factory Waste as an Organic Fertilizer on Growth and Production of Baby Corn

Authors: Marliana S. Palad

Abstract:

The research purpose is to view and know the influence of giving blotong against growth and production of baby corn. The research was arranged as a factorial experiment in completely randomized block design (RBD) with three replications. The first is fertilizer type: blotong (B1), blotong+EM4 (B2) and bokashi blotong (B3), while of the blotong dose assigned as the second factor: blotong 5 ton ha -1 (D1), blotong 10 ton ha-1 (D2) and blotong 15 ton ha-1 (D3). The research result indicated that bokashi blotong gives the best influence compare to blotong+EM4 against all parameters. Interaction between fertilizers does 10 ton ha-1 to the bokashi. Blotong gives the best influence to the baby corn production 4.41 ton ha-1, bokasi blotong best anyway influence on baby corn vegetative growth, that is: plant height 113.00 cm, leaves number 8 (eight) pieces and stem diameter 6.02 cm. Results of analysis of variance showed that giving of bokashi blotong (B3) showed a better effect on the growth and production of baby corn and highly significant for plant height age of 60 days after planting, leaf number aged 60 days after planting, cob length cornhusk and without cornhusk, diameter stems and cobs, cob weight with cornhusk and without cornhusk and production are converted into ton ha-1. This is due to bokashi blotong has organic content of C, N, P, and K totalling more than the maximum treatment blotong (B1) and the blotong+EM4 (B2). Based on the research result, it can be summarised that sugar factory waste called blotong can be used to make bokashi as organic fertilizer, so the baby corn can growth and production better.

Keywords: blotong, bokashi, organic fertilizer, sugar factory waste

Procedia PDF Downloads 394
7464 The Impact of Garlic and Citrus Extracts on Energy Retention and Methane Production in Ruminants in vitro

Authors: Michael Graz, Natasha Hurril, Andrew Shearer

Abstract:

Research on feed supplementation with natural compounds is currently being intensively pursued with a view to improving energy utilisation in ruminants and mitigating the production of methane by these animals. Towards this end, a novel combination of extracts from garlic and bitter orange was therefore selected for trials on the basis of their previously published in vitro anti-methanogenic potential. Three separate in vitro experiments were conducted to determine energy utilisation and greenhouse gas production. These included use of rumen fluid from fistulated cows and sheep in batch culture, the Hohenheim gas test, and the Rusitec technique. Experimental and control arms were utilised, with 5g extracts per kilogram of total dietary dry matter (0.05g/kg active compounds) being used to supplement or not supplement the in vitro systems. Respiratory measurements were conducted on experimental day 1 for the batch culture and Hohenheim gas test and on day 14-21 for the Rusitec Technique (in a 21-day trial). Measurements included methane (CH4) production, total volatile fatty acid (VFA) concentration, molar proportions of acetate, propionate and butyrate and degradation of organic matter (Rusitec). CH4 production was reduced by 82% (±16%), 68% (±11%) and 37% (±4%) in the batch culture, Hohenheim gas test and Rusitec, respectively. Total VFA production was reduced by 13% (±2%) and 2% (±0.1%) in the batch culture and Hohenheim gas test whilst it was increased by 8% (±2%) in the Rusitec. Total VFA production was reduced in all tests between 2 and 10%, whilst acetate production was reduced between 10% and 29%. Propionate production which is an indicator of weight gain was increased in all cases between 16% and 30%. Butyrate production which is considered an indicator of potential milk yield was increased by between 6 and 11%. Degradation of organic matter in the Rusitec experiments was improved by 10% (±0.1%). In conclusion, the study demonstrated the potential of the combination of garlic and citrus extracts to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.

Keywords: citrus, garlic, methane, ruminants

Procedia PDF Downloads 330
7463 Mine Production Index (MPi): New Method to Evaluate Effectiveness of Mining Machinery

Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati

Abstract:

OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPi shovel has been developed by team of experts and researchers for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovelcan properly evaluate production effectiveness of shovels and determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.

Keywords: mining, overall equipment efficiency (OEE), mine production index, shovels

Procedia PDF Downloads 463
7462 Temperature Susceptibility for Optimal Biogas Production

Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji

Abstract:

Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.

Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test

Procedia PDF Downloads 202
7461 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability

Authors: Hosein Faramarzpour

Abstract:

This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.

Keywords: thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic

Procedia PDF Downloads 102
7460 IL-21 Production by CD4+ Effector T Cells and Frequency of Circulating Follicular Helper T Cells Are Increased in Type 1 Diabetes Patients

Authors: Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, Mashar M, Schuilenburg H, Walker NM, Dunger DB, Wallace C, Todd JA, Wicker LS, Pekalski ML

Abstract:

Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta cells in the pancreas. T cells are known to play an important role in this immune-mediated destruction; however, there is no general consensus regarding alterations in cytokine production or T cell subsets in peripheral blood of patients with type 1 diabetes. Using polychromatic flow cytometry of peripheral blood mononuclear cells (PBMCs), we assessed production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 by memory CD4 T effector (Teff) cells in 69 patients with type 1 diabetes and 61 healthy donors. We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). In a separate cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. Consistent with the increased production of IL-21, we also found a 14.9% increase in circulating Tfh cells in the patients with type 1 diabetes (95% CI 2.9, 26.9; p = 0.016). Analysis of IL-21 production by PBMCs from a subset of 46 of the 62 donors immunophenotyped for Tfh showed that frequency of Tfh cells was associated with the frequency of IL-21+ cells (r2 = 0.174, p = 0.004). These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.

Keywords: T follicular helper cell, IL-21, IL-17, type 1 diabetes

Procedia PDF Downloads 380
7459 Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification

Authors: Etty Soesilowati

Abstract:

This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production.

Keywords: cultivation system, diversification, salt products, high quality salt

Procedia PDF Downloads 402
7458 Docking, Pharmacophore Modeling and 3d QSAR Studies on Some Novel HDAC Inhibitors with Heterocyclic Linker

Authors: Harish Rajak, Preeti Patel

Abstract:

The application of histone deacetylase inhibitors is a well-known strategy in prevention of cancer which shows acceptable preclinical antitumor activity due to its ability of growth inhibition and apoptosis induction of cancer cell. Molecular docking were performed using Histone Deacetylase protein (PDB ID:1t69) and prepared series of hydroxamic acid based HDACIs. On the basis of docking study, it was predicted that compound 1 has significant binding interaction with HDAC protein and three hydrogen bond interactions takes place, which are essential for antitumor activity. On docking, most of the compounds exhibited better glide score values between -8 to -10 which is close to the glide score value of suberoylanilide hydroxamic acid. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. The 3D-QSAR models provided a good correlation between predicted and actual anticancer activity. Best QSAR model showed Q2 (0.7974), R2 (0.9200) and standard deviation (0.2308). QSAR visualization maps suggest that hydrogen bond acceptor groups at carbonyl group of cap region and hydrophobic groups at ortho, meta, para position of R9 were favorable for HDAC inhibitory activity. We established structure activity correlation using docking, pharmacophore modeling and atom based 3D QSAR model for hydroxamic acid based HDACIs.

Keywords: HDACIs, QSAR, e-pharmacophore, docking, suberoylanilide hydroxamic acid

Procedia PDF Downloads 302
7457 Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting

Authors: Hamad Almohamadi, Nabeel Alharthi, Majed Alamoudi

Abstract:

Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance.

Keywords: water splitting, electrocatalyst, biphasic design, electrodeposition

Procedia PDF Downloads 74
7456 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, suitability, Zea mays

Procedia PDF Downloads 396
7455 Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings

Authors: Lingfeng Wang, Zhipeng Chen, Shuang Qiu, Shijian Ge

Abstract:

The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances.

Keywords: lipid production, microalgae, nutrient removal, wastewater

Procedia PDF Downloads 241
7454 Gas Flaring Utilization at KK Station

Authors: Abd Alati Ali Abushnaq, Malek Essnni, Abduraouf Eteer

Abstract:

The present study proposes a comprehensive approach to effectively utilize associated gas from the KK remote station, eliminating the practice of flaring and mitigating greenhouse gas (GHG) emissions. The proposed integrated system involves diverting the associated gas via a newly designed pipeline, seamlessly connecting to the existing 12-inch pipeline at the tie-in point. The proposed destination is the low-pressure system at A-100 or 3rd stage, where the associated gas will be channeled towards the NGL (natural gas liquid) plant for processing. To ensure the system's efficacy under varying gas production scenarios, the study employs two industry-standard simulation software packages, Aspen HYSYS and PIPSIM. The simulated results demonstrate the system's ability to handle the projected increase in gas production, reaching up to 38 MMSCFD. This comprehensive analysis ensures the system's robustness and adaptability to future production demands.

Keywords: associated gas, flaring mitigation, GHG emissions, pipeline diversion, NGL plant, KK remote station, production forecasting, Aspen HYSYS, PIPSIM

Procedia PDF Downloads 88
7453 Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes

Authors: Avijit Dey, Shyam S. Paul, Satbir S. Dahiya, Balbir S. Punia, Luciano A. Gonzalez

Abstract:

Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration.

Keywords: buffalo, methanogenesis, rumen fermentation, vegetable oils

Procedia PDF Downloads 406
7452 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13

Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar

Abstract:

Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).

Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey

Procedia PDF Downloads 238
7451 The in vitro Effects of Various Immunomodulatory Nutritional Compounds on Antigen-Stimulated Whole-Blood Culture Cytokine Production

Authors: Ayu S. Muhamad, Michael Gleeson

Abstract:

Immunomodulators are substances that alter immune system via dynamic regulation of messenger molecules. It can be divided into immunostimulant and immunosuppressant. It can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system. Aim of this study is to investigate the effects of in vitro exposure to low and high doses of several immunomodulators which include caffeine, kaloba and quercetin on antigen-stimulated whole blood culture cytokine production. Whole blood samples were taken from 5 healthy males (age: 32 ± 12 years; weight: 75.7 ± 6.1 kg; BMI: 24.3 ± 1.5 kg/m2) following an overnight fast with no vigorous activity during the preceding 24 h. The whole blood was then stimulated with 50 µl of 100 x diluted Pediacel vaccine and low or high dose of immunomodulators in the culture plate. After 20 h incubation (5% CO2, 37°C), it was analysed using the Evidence Investigator to determine the production of cytokines including IL-2, IL-4, IL-10, IFN-γ, and IL-1α. Caffeine and quercetin showed a tendency towards decrease cytokine production as the doses were increased. On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production. In conclusion, we found that caffeine and quercetin have potential as immunosuppressant and kaloba as immunostimulant.

Keywords: caffeine, cytokine, immunomodulators, kaloba, quercetin

Procedia PDF Downloads 466
7450 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan

Authors: Muhammad Zafarullah Khan, Sumeera Abbasi

Abstract:

The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.

Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa

Procedia PDF Downloads 256
7449 A Novel Method for Live Debugging of Production Web Applications by Dynamic Resource Replacement

Authors: Khalid Al-Tahat, Khaled Zuhair Mahmoud, Ahmad Al-Mughrabi

Abstract:

This paper proposes a novel methodology for enabling debugging and tracing of production web applications without affecting its normal flow and functionality. This method of debugging enables developers and maintenance engineers to replace a set of existing resources such as images, server side scripts, cascading style sheets with another set of resources per web session. The new resources will only be active in the debug session and other sessions will not be affected. This methodology will help developers in tracing defects, especially those that appear only in production environments and in exploring the behaviour of the system. A realization of the proposed methodology has been implemented in Java.

Keywords: live debugging, web application, web resources, inconsistent bugs, tracing

Procedia PDF Downloads 459
7448 A Heuristic for the Integrated Production and Distribution Scheduling Problem

Authors: Christian Meinecke, Bernd Scholz-Reiter

Abstract:

The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.

Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration

Procedia PDF Downloads 429
7447 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 532
7446 Improvement of Artemisinin Production by P. indica in Hairy Root Cultures of A. annua L.

Authors: Seema Ahlawat, Parul Saxena, Malik Zainul Abdin

Abstract:

Malaria is a major health problem in many developing countries. The parasite responsible for the vast majority of fatal malaria infections is Plasmodium falciparum. Unfortunately, most Plasmodium strains including P. falciparum have become resistant to most of the antimalarials including chloroquine, mefloquine, etc. To combat this problem, WHO has recommended the use of artemisinin and its derivatives in artemisinin based combination therapy (ACT). Due to its current use in artemisinin based-combination therapy (ACT), its global demand is increasing continuously. But, the relatively low yield of artemisinin in A. annua L. plants and unavailability of economically viable synthetic protocols are the major bottlenecks for its commercial production and clinical use. Chemical synthesis of artemisinin is also very complex and uneconomical. The hairy root system, using the Agrobacterium rhizogenes LBA 9402 strain to enhance the production of artemisinin in A. annua L., is developed in our laboratory. The transgenic nature of hairy root lines and the copy number of trans gene (rol B) were confirmed using PCR and Southern Blot analyses, respectively. The effect of different concentrations of Piriformospora indica on artemisinin production in hairy root cultures were evaluated. 3% P. indica has resulted 1.97 times increase in artemisinin production in comparison to control cultures. The effects of P. indica on artemisinin production was positively correlated with regulatory genes of MVA, MEP and artemisinin biosynthetic pathways, viz. hmgr, ads, cyp71av1, aldh1, dxs, dxr and dbr2 in hairy root cultures of A. annua L. Mass scale cultivation of A. annua L. hairy roots by plant tissue culture technology may be an alternative route for production of artemisinin. A comprehensive investigation of the hairy root system of A. annua L. would help in developing a viable process for the production of artemisinin. The efficiency of the scaling up systems still needs optimization before industrial exploitation becomes viable.

Keywords: A. annua L., artemisinin, hairy root cultures, malaria

Procedia PDF Downloads 415
7445 Hydrogen Sulfide Releasing Ibuprofen Derivative Can Protect Heart After Ischemia-Reperfusion

Authors: Virag Vass, Ilona Bereczki, Erzsebet Szabo, Nora Debreczeni, Aniko Borbas, Pal Herczegh, Arpad Tosaki

Abstract:

Hydrogen sulfide (H₂S) is a toxic gas, but it is produced by certain tissues in a small quantity. According to earlier studies, ibuprofen and H₂S has a protective effect against damaging heart tissue caused by ischemia-reperfusion. Recently, we have been investigating the effect of a new water-soluble H₂S releasing ibuprofen molecule administered after artificially generated ischemia-reperfusion on isolated rat hearts. The H₂S releasing property of the new ibuprofen derivative was investigated in vitro in medium derived from heart endothelial cell isolation at two concentrations. The ex vivo examinations were carried out on rat hearts. Rats were anesthetized with an intraperitoneal injection of ketamine, xylazine, and heparin. After thoracotomy, hearts were excised and placed into ice-cold perfusion buffer. Perfusion of hearts was conducted in Langendorff mode via the cannulated aorta. In our experiments, we studied the dose-effect of the H₂S releasing molecule in Langendorff-perfused hearts with the application of gradually increasing concentration of the compound (0- 20 µM). The H₂S releasing ibuprofen derivative was applied before the ischemia for 10 minutes. H₂S concentration was measured with an H₂S detecting electrochemical sensor from the coronary effluent solution. The 10 µM concentration was chosen for further experiments when the treatment with this solution was occurred after the ischemia. The release of H₂S is occurred by the hydrolyzing enzymes that are present in the heart endothelial cells. The protective effect of the new H₂S releasing ibuprofen molecule can be confirmed by the infarct sizes of hearts using the Triphenyl-tetrazolium chloride (TTC) staining method. Furthermore, we aimed to define the effect of the H₂S releasing ibuprofen derivative on autophagic and apoptotic processes in damaged hearts after investigating the molecular markers of these events by western blotting and immunohistochemistry techniques. Our further studies will include the examination of LC3I/II, p62, Beclin1, caspase-3, and other apoptotic molecules. We hope that confirming the protective effect of new H₂S releasing ibuprofen molecule will open a new possibility for the development of more effective cardioprotective agents with exerting fewer side effects. Acknowledgment: This study was supported by the grants of NKFIH- K-124719 and the European Union and the State of Hungary co- financed by the European Social Fund in the framework of GINOP- 2.3.2-15-2016-00043.

Keywords: autophagy, hydrogen sulfide, ibuprofen, ischemia, reperfusion

Procedia PDF Downloads 140
7444 Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation

Authors: Young Min Kim, Deokyeong Choe, Chul Soo Shin

Abstract:

Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step.

Keywords: cultivation process, fed-batch fermentation, monascus pigments, pH stability

Procedia PDF Downloads 300
7443 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance

Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens

Abstract:

Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.

Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium

Procedia PDF Downloads 66
7442 iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model

Authors: Jocelyn B. Barbosa, Angeli L. Magbaril, Mariel T. Sabanal, John Paul T. Galario, Mikka P. Baldovino

Abstract:

The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring.

Keywords: automatic swine counting, swine detection, swine production monitoring, ellipse fitting model, sobel filter

Procedia PDF Downloads 311
7441 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization

Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva

Abstract:

This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.

Keywords: genetic algorithms, textile industry, job scheduling, optimization

Procedia PDF Downloads 157