Search results for: aluminium catalyst
387 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry
Procedia PDF Downloads 559386 Self-Overestimation and Underestimation of Others: A Catalyst for Religious Conflict in Nigeria
Authors: Abdulazeez Balogun Shittu
Abstract:
This study investigates the role of self-overestimation and underestimation of others in fueling religious conflicts in Nigeria. Using a mixed-methods approach, this research examines how exaggerated self-perceptions and diminished views of others contribute to intergroup tensions, stereotypes, and violence. The findings reveal that self-overestimation and underestimation of others are significant predictors of religious conflict, mediated by factors such as intergroup bias, social identity, cultural narratives and lack of interfaith dialogue. The study also identifies the consequences of these biases, including Escalated sectarian violence, social cohesion erosion and polarized communities. To mitigate these effects, the research recommends interfaith education and dialogue initiatives, inclusive governance and policy frameworks and pluralistic media representation. This study contributes to the understanding of psychological and social dynamics driving religious conflict in Nigeria, informing evidence-based policies and interventions to promote peaceful coexistence.Keywords: conflict resolution, intergroup relations, Nigeria, Religious conflict, self-overestimation, social psychology, underestimation of others
Procedia PDF Downloads 12385 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 106384 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention
Procedia PDF Downloads 140383 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 321382 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts
Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat
Abstract:
The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis
Procedia PDF Downloads 206381 Enhanced Oxygen Reduction Reaction by N-Doped Mesoporous Carbon Nanospheres
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of Nitrogen-doped mesoporous carbon spheres (NMC) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro) chemical properties of the NMCs have been comprehensively investigated to pave the way for feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity and high nitrogen content, which make it as a highly efficient ORR metal-free catalyst in alkaline solutions.Keywords: porous carbon, N-doping, oxygen reduction reaction, soft-template
Procedia PDF Downloads 250380 Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming
Authors: Francisco Espinosa, Juan Chavarría
Abstract:
Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for the use of iridium in aqueous-phase reforming is the low activity in water-gas shift reaction. Therefore, in this work, it is proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO₂ or La₂O₃ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol 10 wt% in water at 270°C, and reaction products were analyzed by gas chromatography. It was found that IrNi/CeO₂ reached highest glycerol conversion and hydrogen production, slightly above 70% and 43 vol% respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal.Keywords: aqueous-phase reforming, glycerol, hydrogen production, iridium
Procedia PDF Downloads 323379 Electrochemical Recovery of Lithium from Geothermal Brines
Authors: Sanaz Mosadeghsedghi, Mathew Hudder, Mohammad Ali Baghbanzadeh, Charbel Atallah, Seyedeh Laleh Dashtban Kenari, Konstantin Volchek
Abstract:
Lithium has recently been extensively used in lithium-ion batteries (LIBs) for electric vehicles and portable electronic devices. The conventional evaporative approach to recover and concentrate lithium is extremely slow and may take 10-24 months to concentrate lithium from dilute sources, such as geothermal brines. To response to the increasing industrial lithium demand, alternative extraction and concentration technologies should be developed to recover lithium from brines with low concentrations. In this study, a combination of electrocoagulation (EC) and electrodialysis (ED) was evaluated for the recovery of lithium from geothermal brines. The brine samples in this study, collected in Western Canada, had lithium concentrations of 50-75 mg/L on a background of much higher (over 10,000 times) concentrations of sodium. This very high sodium-to-lithium ratio poses challenges to the conventional direct-lithium extraction processes which employ lithium-selective adsorbents. EC was used to co-precipitate lithium using a sacrificial aluminium electrode. The precipitate was then dissolved, and the leachate was treated using ED to separate and concentrate lithium from other ions. The focus of this paper is on the study of ED, including a two-step ED process that included a mono-valent selective stage to separate lithium from multi-valent cations followed by a bipolar ED stage to convert lithium chloride (LiCl) to LiOH product. Eventually, the ED cell was reconfigured using mono-valent cation exchange with the bipolar membranes to combine the two ED steps in one. Using this process at optimum conditions, over 95% of the co-existing cations were removed and the purity of lithium increased to over 90% in the final product.Keywords: electrochemical separation, electrocoagulation, electrodialysis, lithium extraction
Procedia PDF Downloads 91378 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde
Authors: Pawan P. Kalbende, Anil B. Zade
Abstract:
A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake
Procedia PDF Downloads 294377 Sonochemically Prepared Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion
Authors: Przemyslaw J. Jodlowski, Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Lukasz Kuterasinski, Anna Gancarczyk, Maciej Sitarz
Abstract:
The aim of this study was to obtain highly active catalysts based on non-noble metal oxides supported on zirconia prepared via a sonochemical method. In this study, the influence of the stabilizers addition during the preparation step was checked. The final catalysts were characterized by using such characterization methods as X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The proposed preparation method allowed to obtain uniformly dispersed metal-oxide nanoparticles at the support’s surface. The catalytic activity of prepared catalyst samples was measured in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was considerably higher than their counterparts prepared by the incipient wetness method.Keywords: methane catalytic combustion, nanoparticles, non-noble metals, sonochemistry
Procedia PDF Downloads 214376 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol
Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-glycerol, catalyst, green additive, biomass
Procedia PDF Downloads 241375 Low- and High-Temperature Methods of CNTs Synthesis for Medicine
Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza
Abstract:
One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation
Procedia PDF Downloads 448374 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei
Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya
Abstract:
Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity
Procedia PDF Downloads 70373 Enacting Educational Technology Affordances as Mechanisms Responsible for Gaining Epistemological Access: A Case of Underprivileged Students at Higher Institutions in Northern Nigeria
Authors: Bukhari Badamasi, Chidi G. Ononiwu
Abstract:
Globally, educational technology (EdTech) has become a known catalyst for gaining access to education, job creation, and national development of a nation. Howbeit, it is common understanding that higher institutions continue to deploy digital technologies, to help provide access to education, but in most case, it is somehow institutional access not epistemological access especially in sub Saharan African higher institutions. Some scholars, however, lament the fact that studies on educational technology affordances are mostly fragmented because they focus on specific theme or sub aspect of access (i.e., institutional access). Thus, drawing from the Archer Morphogenetic approach, and Gibson Affordance theory, and applying critical realist based Danermark model for explanatory research, the study seeks to conduct a realist case study on underprivileged students in Higher institutions on how they gain epistemological access by enacting educational technology (EdTech) affordances.Keywords: affordance, epistemological access, educational technology, underprivileged students
Procedia PDF Downloads 83372 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling
Procedia PDF Downloads 211371 Sulfamethaxozole (SMX) Removal by Microwave-Assisted Heterogenous Fenton Reaction Involving Synthetic Clay (LDHS)
Authors: Chebli Derradji, Abdallah Bouguettoucha, Zoubir Manaa, S. Nacef, A. Amrane
Abstract:
Antibiotics are major pollutants of wastewater not only due to their stability in biological systems, but also due to their impact on public health. Their degradation by means of hydroxyl radicals generated through the application of microwave in the presence of hydrogen peroxide and two solid catalysts, iron-based synthetic clay (LDHs) and goethite (FeOOH) have been examined. A drastic reduction of the degradation yield was observed above pH 4, and hence the optimal conditions were found to be a pH of 3, 0.1 g/L of clay, a somewhat low amount of H2O2 (1.74 mmol/L) and a microwave intensity of 850 W. It should be observed that to maintain an almost constant temperature, a cooling with cold water was always applied between two microwaves running; and hence the ratio between microwave heating time and cooling time was 1. The obtained SMX degradation was 98.8 ± 0.2% after 30 minutes of microwave treatment. It should be observed that in the absence of the solid catalyst, LDHs, no SMX degradation was observed. From this, the use of microwave in the presence of a solid source of iron (LDHs) appears to be an efficient solution for the treatment of wastewater containing SMX.Keywords: microwave, fenton, heterogenous fenton, degradation, oxidation, antibiotics
Procedia PDF Downloads 279370 Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water
Authors: Prem Mohan, Namrata Jariwala
Abstract:
In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment.Keywords: activated carbon, advanced oxidation process, dyeing waste water, fenton oxidation process
Procedia PDF Downloads 209369 A Review of Urban Placemaking Assessment Frameworks
Authors: Amal Abdou, Yasser ElSayed, Nora Selim
Abstract:
Public urban spaces are an essential component in any urban settlement. They are quite important in enhancing the quality of urban life while offering social, health, environmental and economic benefits to a city and its residents. Place-making assessment of public urban spaces has been one of the major guiding principles for urban planning and policymaking, of which the definition and evaluation have become the crucial research topic. It is increasingly being essential to mitigate the undesirable impacts of urbanization in cities while improving public urban space’s resilience to environmental, social, and economic changes. Globally, several place-making assessment tools (PATs) have been developed to make such informed decision-making. They act as a catalyst to increase market demand for sustainable products and services by providing a mechanism for recognizing excellence. Assessing how placemaking can positively contribute to urban environments is critical to inform both the continued development of the place and the way placemaking is done as a practice. Therefore, this study aims to review different themes for assessing urban placemaking in public urban spaces.Keywords: urban placemaking, public urban spaces, placemaking assessment, literature review
Procedia PDF Downloads 97368 Transformational Leadership and Departmental Performance: The Intervening Role of Internal Communication and Citizen/Customer Participation
Authors: Derrick Boakye Boadu, Zahra Fakhri
Abstract:
Transformational leaders are the catalyst of change and focus more importantly on members or followers. Involvement of transformational leadership style in organizational structures can provide interesting nuances to the implementation and enhancement of citizen and customer participation mechanisms in an organization regardless of the time consuming, cost, and delaying process of analyzing the feedback of workers and citizens/customers which stifles good outcome of organization’s department performance. It posits that transformational leadership has a positive direct effect on organization-departmental performance and the intervening role of citizen and customer participation and internal communication. Using the NASP-IV 2007 data, the article finds support for the five hypotheses in a structural equation model, and the findings show that transformational leadership does have a direct impact on organizational-departmental performance a partial mediation effect of the relationship through the role of internal communication and citizen and customer participation.Keywords: transformational leaders, departmental performance, internal communication, citizen/customer participation
Procedia PDF Downloads 115367 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 122366 Reuse of Spent Lithium Battery for the Production of Environmental Catalysts
Authors: Jyh-Cherng Chen, Chih-Shiang You, Jie-Shian Cheng
Abstract:
This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied.Keywords: catalyst, lithium-cobalt battery, lithium-iron battery, recycle and reuse
Procedia PDF Downloads 256365 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane
Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato
Abstract:
Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell
Procedia PDF Downloads 152364 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 212363 Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6
Authors: Muna Khethier Abbass, Khairia Salman Hussan, Huda Mohummed AbdudAlaziz
Abstract:
This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection.Keywords: friction stir welding, TIG welding, mechanical properties, shot peening
Procedia PDF Downloads 337362 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 256361 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate
Authors: Kumar N., Verma S., Park J., Srivastava V. C.
Abstract:
Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics
Procedia PDF Downloads 79360 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy
Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa
Abstract:
Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure
Procedia PDF Downloads 352359 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions
Authors: Tran Le Luu, Jeyong Yoon
Abstract:
RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution
Procedia PDF Downloads 252358 Comparative Catalytic Activity of Some Ferrites for Phenol Degradation in Aqueous Solutions
Authors: Bayan Alqassem, Israa A. Othman, Mohammed Abu Haija, Fawzi Banat
Abstract:
The treatment of wastewater from highly toxic pollutants is one of the most challenging issues for humanity. In this study, the advanced oxidation process (AOP) was employed to study the catalytic degradation of phenol using different ferrite catalysts which are CoFe₂O₄, CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄ and ZnFe₂O₄. The ferrite catalysts were prepared via sol-gel and co-precipitation methods. Different ferrite composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. The effect of phosphoric acid treatment on the copper ferrite activity. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high performance liquid chromatography (HPLC). The experimental results showed that ferrites prepared through sol-gel route were more active than those of the co-precipitation method towards phenol degradation. In both cases, CuFe₂O₄ exhibited the highest degradation of phenol compared to the other ferrites. The photocatalytic properties of the ferrites were also investigated.Keywords: ferrite catalyst, ferrite composites, phenol degradation, photocatalysis
Procedia PDF Downloads 215