Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming

Abstract

Authors : Francisco Espinosa, Juan Chavarría Abstract : Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO_{2} or $\mathrm{La}_{2} \mathrm{O}_{3}$ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol $10 \mathrm{wt} \%$ in water at $270^{\circ} \mathrm{C}$, and reaction products were analyzed by gas chromatography. It was found that $\mathrm{IrNi} / \mathrm{CeO}_{2}$ reached highest glycerol conversion and hydrogen production, slightly above 70\% and $43 \mathrm{vol} \%$ respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal.

Keywords : aqueous-phase reforming, glycerol, hydrogen production, iridium
Conference Title : ICHPS 2017 : International Conference on Hydrogen Production and Storage
Conference Location : Tokyo, Japan
Conference Dates : September 07-08, 2017

