Search results for: in situ production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8091

Search results for: in situ production

1251 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu

Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo

Abstract:

Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).

Keywords: sulphur, innovation, paving block, CSR, sulphur paving

Procedia PDF Downloads 74
1250 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.

Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa

Procedia PDF Downloads 164
1249 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 207
1248 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 383
1247 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use

Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat

Abstract:

The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.

Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields

Procedia PDF Downloads 130
1246 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: control, milling, multibody, robotic, simulation

Procedia PDF Downloads 246
1245 Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Salmonella enterica Typhimurium

Authors: Jun Hyung Lee, Robin B. Guevarra, Jin Ho Cho, Bo-Ra Kim, Jiwon Shin, Doo Wan Kim, Young Hwa Kim, Minho Song, Hyeun Bum Kim

Abstract:

Salmonella is one of the most important swine pathogens, causing acute or chronic digestive diseases, such as enteritis. The acute form of enteritis is common in young pigs of 2-4 months of age. Salmonellosis in swine causes a huge economic burden to swine industry by reducing production. Therefore, it is necessary that swine industries should strive to decrease Salmonellosis in pigs in order to reduce economic losses. Thus, we tested three types of natural plant extracts(PEs) to evaluate antibacterial effects against Salmonella enterica Typhimurium isolated from the piglet with Salmonellosis. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour; then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.5cm, 2.7cm, and 2.8cm diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit Salmonella growth significantly after 4hours. The garlic essential oil retained the ability to inhibit Salmonella growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit Salmonella growth by all the tests. Even though further in-vivo tests will be needed to verify effects of garlic essential oil for the Salmonellosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Salmonellosis in swine.

Keywords: garlic essential oil, pig, salmonellosis, Salmonella enterica

Procedia PDF Downloads 171
1244 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 75
1243 Role of Cognitive Flexibility and Employee Engagement in Determining Turnover Intentions of Employees

Authors: Prashant Das, Tushar Singh, Virendra Byadwal

Abstract:

The present study attempted to understand the role of cognitive flexibility and employee engagement in predicting employees’ turnover intentions. Employee turnover is a significant problem that many organizations are facing these days. Employee turnover is not only extremely expensive for the employer but also results in poor production levels. In developing countries like India, organizations once believed to have most stable employees, are facing major turnover problems. One such organization is banking organizations. Due to globalization, banks are now changing their work scenarios under which the employees have many different roles to perform. Cognitive flexibility which refers to an individual’s ability to shift cognitive sets and to adapt to one’s changing environment, thus seems to be an important factor that are responsible for the employee turnover in organizations. It is hypothesized that those with higher cognitive flexibility would be more able to adapt to the changing work demands of the organizations and thus would show less turnover intentions. Another factor that seems to be important in predicting turnover is employee engagement. Kahn referred to engagement in terms of the harnessing of organization members’ selves to their work roles [by which they] employ and express themselves physically, cognitively, and emotionally during role performances. Studies have shown a strong relationship between employee engagement and turnover intentions. Those with higher engagement with their jobs have found to show low turnover intentions. This study thus hypothesizes that employees with higher engagement will show lower levels of turnover intentions. A total of 150 bank employees (75 from private and 75 from public) participated in this study. They were administered Cognitive Flexibility Scale, Gallup Questionnaire and Intention to Stay Questionnaire along with another questionnaire asking for their demographic details. Results of the study revealed that employees with higher levels of cognitive flexibility and employee engagement show lover levels of turnover intentions. However, the effect is more prominent in case of employees of private banks. Demographic characteristics such as level of the employee and years of engagement in the current job have also been found to be influencing the relationship between cognitive flexibility, employee engagement and turnover intentions. Results of the study are interpreted in accordance to the prevalent literature and theoretical positions.

Keywords: cognitive flexibility, employee engagement, organization, turnover intentions

Procedia PDF Downloads 422
1242 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 95
1241 The Survey of Sea Cucumber Fisheries in QESHM Island Coasts: Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour, Rastin Afkhami

Abstract:

Sea cucumbers are aquatic animals with a wide variety useful for human health. Sea cucumbers are from the aquatic creatures that have many important and useful properties known for human health. Increasing demand for beche-de-mer along with steady price increases have led to worldwide intensification of sea cucumber harvesting. The rearing of sea cucumber with shrimp controls the environmental pollution results from extra enriched nutritious built on the pond bottom. These animals eat detritus and with devouring of organic materials on the surface, not only do they make the environment clean, but also they cause the fast growth of shrimp and themselves. Holothuria scabra is a main species for producing of Beche-de-mer and more exploited in tropical region of the world. The wall of body is used in the process of beche-de-mer production that forms the 56% of the whole body. Holothuria scabra (sandfish) is an aspidochirote holothurian widely distributed in coastal regions throughout the Indo-Pacific region. H. scabra is often found on inner reef flats and near estuaries, half buried in the silt sand during the day and emerging at night to feed. In this study upon to information from local fishermen's in Qeshm island, we Providing some data about fishing methods, processing and distribution in the Qeshm island coastline. Comparative study of fishing status with another part of the world determined that the status of sea cucumber stocks in Qeshm Island is suitable. For preventing of over exploited of sandy sea cucumber capture prohibition should be continue. In this study, 7 explotide sites are recognized, the target size for fishermen's was more than 20 cm and sandy cucumber was the target species in Qeshm Island. In this area the fishing operation was only done by scuba diving and has been done only by men's. Although in another countries women's have an important role in sea cucumber fishing operation. In the coast around Qeshm island it is found in Hmoon, Tolla, kovei, Ramchah, Messen, and Hengam. The maximum length and weight was recorded 35 cm and 1080 gr, respectively.

Keywords: sea cucumber, Holothuria scabra, fishing status, Qeshm Island

Procedia PDF Downloads 446
1240 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 292
1239 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: nanoparticles, seed germination, seed soaking, wheat

Procedia PDF Downloads 225
1238 Cupric Oxide Thin Films for Optoelectronic Application

Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch

Abstract:

Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.

Keywords: absorber material, cupric oxide, dip coating, thin film

Procedia PDF Downloads 308
1237 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay

Abstract:

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Keywords: trout, Kashmir, value chain, linkages, culture

Procedia PDF Downloads 401
1236 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 132
1235 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 412
1234 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 295
1233 Poverty Alleviation and Agricultural Management Policies in Nasarawa State of Nigeria: Lessons from the Roots and Tuber Crops Expansion for Increased Food Production (1996-2011)

Authors: Yahaya Abdullahi Adadu, Canice Erunke Esidene

Abstract:

The problems of socio-economic development have been a major challenge bedeviling the Nigerian post-colonial state since her political independence from Britain in October I,1960. Critics have argued that the dilemma of Nigeria’s economic survival started since the early 1970s when the agricultural sector which supposedly was the economic mainstay has been literally substituted with the gains of the oil petro-dollars coming from the foreign exchange earnings. Agriculture therefore, which used to be a major player in terms of human and national upliftment in Nigeria have been given a back seat while oil and gas has taken over the front burner in virtually every aspect of Nigeria’s national life. This study is therefore an exposition of the efforts of the Nasarawa state government in reversing the dangerous trend in which the over reliance on oil wealth has caused to persons, individuals and groups in terms of the prevailing levels of poverty and other attendant vices therein. The study focuses on the management policies of the various regimes in the state since its inception in 1996, with particular reference to the regime types-military and civilian alike in propelling the needed policy change, which could transform the economy in line with international best practices. Particular emphasis will be paid to the BADA-KOSHI agricultural scheme whose interest was to recover the lost glory of rural agriculture through series of roots and tuber expansion, and particularly such crops as yam minissetts, cassava, sweet potatoes and coco-yam, respectively. The paper covers the period between 1996 -2011, a period considered to be critical in the agricultural revolution of the state. The study adopts a theoretical approach via secondary methods of analysis for the efficient explanations of the burning issues under consideration. The paper sums up with policy recommendations and conclusion.

Keywords: poverty, agriculture, Badakoshi, rural policy management

Procedia PDF Downloads 442
1232 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes

Authors: Misra Ayse Adsiz, Selim Selvi

Abstract:

In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.

Keywords: agile, design, missile, scrum

Procedia PDF Downloads 166
1231 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 261
1230 European Standardization in Nanotechnologies and Relation with International Work: The Standardization Can Help Industry and Regulators in Developing Safe Products

Authors: Patrice Conner

Abstract:

Nanotechnologies have enormous potential to contribute to human flourishing in responsible and sustainable ways. They are rapidly developing field of science, technology and innovation. As enabling technologies, their full scope of applications is potentially very wide. Major implications are expected in many areas, e.g. healthcare, information and communication technologies, energy production and storage, materials science/chemical engineering, manufacturing, environmental protection, consumer products, etc. However, nanotechnologies are unlikely to realize their full potential unless their associated societal and ethical issues are adequately attended. Namely nanotechnologies and nanoparticles may expose humans and the environment to new health risks, possibly involving quite different mechanisms of interference with the physiology of human and environmental species. One of the building blocks of the ‘safe, integrated and responsible’ approach is standardization. Both the Economic and Social Committee and the European Parliament have highlighted the importance to be attached to standardization as a means to accompany the introduction on the market of nanotechnologies and nanomaterials, and a means to facilitate the implementation of regulation. ISO and CEN have respectively started in 2005 and 2006 to deal with selected topics related to this emerging and enabling technology. In the beginning of 2010, EC DG ‘Enterprise and Industry’ addressed the mandate M/461 to CEN, CENELEC and ETSI for standardization activities regarding nanotechnologies and nanomaterials. Thus CEN/TC 352 ‘Nanotechnologies’ has been asked to take the leadership for the coordination in the execution of M/461 (46 topics to be standardized) and to contact relevant European and International Technical committees and interested stakeholders as appropriate (56 structures have been identified). Prior requests from M/461 deal with characterization and exposure of nanomaterials and any matters related to Health, Safety and Environment. Answers will be given to: - What are the structures and how they work? - Where are we right now and how work is going from now onwards? - How CEN’s work and targets deal with and interact with global matters in this field?

Keywords: characterization, environmental protection, exposure, health risks, nanotechnologies, responsible and sustainable ways, safety

Procedia PDF Downloads 188
1229 Utilization of Agro-wastes for Biotechnological Production of Edible Mushroom

Authors: Salami Abiodun Olusola, Bankole Faith Ayobami

Abstract:

Agro-wastes are wastes produced from various agricultural activities and include manures, corncob, plant stalks, hulls, leaves, sugarcane bagasse, oil-palm spadix, and rice bran. In farming situation, the agro-waste is often useless and, thus, discarded. Huge quantities of waste resources generated from Nigerian agriculture could be converted to more useful forms of energy, which could contribute to the country’s primary energy needs and reduce problems associated with waste management. Accumulation of agro-wastes may cause health, safety, and environmental concern. However, biotechnological use of agro-waste could enhance food security through its bioconversion to useful renewable energy. Mushrooms are saprophytes which feed by secreting extracellular enzymes, digesting food externally, and absorb the nutrients in net-like hyphae. Therefore, mushrooms could be exploited for bioconversion of the cheap and numerous agro-wastes for providing nutritious food for animals, human and carbon recycling. The study investigated the bioconversion potentials of Pleurotus florida on agro-wastes using a simple and cost-effective biotechnological method. Four agro-wastes; corncobs, oil-palm spadix, corn straw, and sawdust, were composted and used as substrates while the biological efficiency (BE) and the nutritional composition of P. florida grown on the substrates were determined. Pleurotus florida contained 26.28-29.91% protein, 86.90-89.60% moisture, 0.48-0.91% fat, 19.64-22.82% fibre, 31.37-38.17% carbohydrate and 5.18-6.39% ash. The mineral contents ranged from 342-410 mg/100g Calcium, 1009-1133 mg/100g Phosphorus, 17-21 mg/100g Iron, 277-359 mg/100g Sodium, and 2088-2281 mg/100g Potassium. The highest yield and BE were obtained on corncobs (110 g, 55%), followed by oil-palm spadix (76.05 g, 38%), while the least BE was recorded on corn straw substrate (63.12 g, 31.56%). Utilization of the composted substrates yielded nutritional and edible mushrooms. The study presents biotechnological procedure for bioconversion of agro-wastes to edible and nutritious mushroom for efficient agro-wastes’ management, utilization, and recycling.

Keywords: agrowaste, bioconversion, biotechnology, utilization, recycling

Procedia PDF Downloads 76
1228 The Role of Group Dynamics in Creativity: A Study Case from Italy

Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo

Abstract:

Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.

Keywords: group dynamics, creative thinking, creative action, social interactions, group play

Procedia PDF Downloads 125
1227 Alternative Ways of Knowing and the Construction of a Department Around a Common Critical Lens

Authors: Natalie Delia

Abstract:

This academic paper investigates the transformative potential of incorporating alternative ways of knowing within the framework of Critical Studies departments. Traditional academic paradigms often prioritize empirical evidence and established methodologies, potentially limiting the scope of critical inquiry. In response to this, our research seeks to illuminate the benefits and challenges associated with integrating alternative epistemologies, such as indigenous knowledge systems, artistic expressions, and experiential narratives. Drawing upon a comprehensive review of literature and case studies, we examine how alternative ways of knowing can enrich and diversify the intellectual landscape of Critical Studies departments. By embracing perspectives that extend beyond conventional boundaries, departments may foster a more inclusive and holistic understanding of critical issues. Additionally, we explore the potential impact on pedagogical approaches, suggesting that alternative ways of knowing can stimulate alternative way of teaching methods and enhance student engagement. Our investigation also delves into the institutional and cultural shifts necessary to support the integration of alternative epistemologies within academic settings. We address concerns related to validation, legitimacy, and the potential clash with established norms, offering insights into fostering an environment that encourages intellectual pluralism. Furthermore, the paper considers the implications for interdisciplinary collaboration and the potential for cultivating a more responsive and socially engaged scholarship. By encouraging a synthesis of diverse perspectives, Critical Studies departments may be better equipped to address the complexities of contemporary issues, encouraging a dynamic and evolving field of study. In conclusion, this paper advocates for a paradigm shift within Critical Studies departments towards a more inclusive and expansive approach to knowledge production. By embracing alternative ways of knowing, departments have the opportunity to not only diversify their intellectual landscape but also to contribute meaningfully to broader societal dialogues, addressing pressing issues with renewed depth and insight.

Keywords: critical studies, alternative ways of knowing, academic department, Wallerstein

Procedia PDF Downloads 70
1226 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 147
1225 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: data management, enhancing learning experience, publishing, research higher degree students, doctoral students

Procedia PDF Downloads 273
1224 Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production

Authors: Bahiru Tsegaye, Chandrajit Balomajumder, Partha Roy

Abstract:

The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw.

Keywords: cellulose, hydrolysis, lignocellulose, optimization

Procedia PDF Downloads 269
1223 The Emerging Multi-Species Trap Fishery in the Red Sea Waters of Saudi Arabia

Authors: Nabeel M. Alikunhi, Zenon B. Batang, Aymen Charef, Abdulaziz M. Al-Suwailem

Abstract:

Saudi Arabia has a long history of using traps as a traditional fishing gear for catching commercially important demersal, mainly coral reef-associated fish species. Fish traps constitute the dominant small-scale fisheries in Saudi waters of Arabian Gulf (eastern seaboard of Saudi Arabia). Recently, however, traps have been increasingly used along the Saudi Red Sea coast (western seaboard), with a coastline of 1800 km (71%) compared to only 720 km (29%) in the Saudi Gulf region. The production trend for traps indicates a recent increase in catches and percent contribution to traditional fishery landings, thus ascertaining the rapid proliferation of trap fishing along the Saudi Red Sea coast. Reef-associated fish species, mainly groupers (Serranidae), emperors (Lethrinidae), parrotfishes (Scaridae), scads and trevallies (Carangidae), and snappers (Lutjanidae), dominate the trap catches, reflecting the reef-dominated shelf zone in the Red Sea. This ongoing investigation covers following major objectives (i) Baseline studies to characterize trap fishery through landing site visit and interview surveys (ii) Stock assessment by fisheries and biological data obtained through monthly landing site monitoring using fishery operational model by FLBEIA, (iii) Operational impacts, derelict traps assessment and by-catch analysis through bottom-mounted video camera and onboard monitoring (iv) Elucidation of fishing grounds and derelict traps impacts by onboard monitoring, Remotely Operated underwater Vehicle and Autonomous Underwater Vehicle surveys; and (v) Analysis of gear design and operations which covers colonization and deterioration experiments. The progress of this investigation on the impacts of the trap fishery on fish stocks and the marine environment in the Saudi Red Sea region is presented.

Keywords: red sea, Saudi Arabia, fish trap, stock assessment, environmental impacts

Procedia PDF Downloads 347
1222 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 327