Search results for: contemporary conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10957

Search results for: contemporary conditions

4117 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 127
4116 Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka

Authors: G. Sridevi, Amalendu Jyotishi, Sushanta Mahapatra, G. Jagadeesh, Satyasiba Bedamatta

Abstract:

Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability.

Keywords: vulnerability, agriculture, climate change, global warming

Procedia PDF Downloads 455
4115 A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger

Authors: Kshitij Bhardwaj, R.K. Trivedi, Shipra Dixit

Abstract:

We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications.

Keywords: solid state fermentation, Jatropha curcas, oil seed cake, phorbol ester

Procedia PDF Downloads 476
4114 Ground Deformation Module for the New Laboratory Methods

Authors: O. Giorgishvili

Abstract:

For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.

Keywords: build, deformation modulus, foundations, ground, laboratory research

Procedia PDF Downloads 365
4113 Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent

Authors: Jonathan Andres Pullas Navarrete, Ernesto Hale de la Torre Chauvin

Abstract:

In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w.

Keywords: activated carbon, adsorption, antibacterial activity, coliforms, surface area

Procedia PDF Downloads 277
4112 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy

Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces

Procedia PDF Downloads 274
4111 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 210
4110 The Social Process of Alternative Dispute Resolution and Collective Conciliation: Unveiling the Theoretical Framework

Authors: Adejoke Yemisi Ige

Abstract:

This study presents a conceptual analysis and investigation into the development of a systematic framework required for better understanding of the social process of Alternative Dispute Resolution (ADR) and collective conciliation. The critical examination presented in this study is significant because; it draws on insight from ADR, negotiation and collective bargaining literature and applies it in our advancement of a methodical outline which gives an insight into the influence of the key actors and other stakeholder strategies and behaviours during dispute resolution in relation to the outcomes which is novel. This study is qualitative and essentially inductive in nature. One of the findings of the study confirms the need to consider ADR and collective conciliation within the context of the characteristic conditions; which focus on the need for some agreement to be reached. Another finding of the study shows the extent which information-sharing, willingness of the parties to negotiate and make concession assist both parties to attain resolution. This paper recommends that in order to overcome deadlock and attain acceptable outcomes at the end of ADR and collective conciliation, the importance of information exchange and sustenance of trade union and management relationship cannot be understated. The need for trade unions and management, the representatives to achieve their expectations in order to build the confidence and assurance of their respective constituents is essential. In conclusion, the analysis presented in this study points towards a set of factors that together can be called the social process of collective conciliation nevertheless; it acknowledges that its application to collective conciliation is new.

Keywords: alternative dispute resolution, collective conciliation, social process, theoretical framework, unveiling

Procedia PDF Downloads 149
4109 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 260
4108 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application

Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej

Abstract:

In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.

Keywords: flight management system, GPS, IMU, inertial navigation system

Procedia PDF Downloads 293
4107 Evolution of Approaches to Cost Calculation in the Conditions of the Modern Russian Economy

Authors: Elena Tkachenko, Vladimir Kokh, Alina Osipenko, Vladislav Surkov

Abstract:

The modern period of development of Russian economy is fraught with a number of problems related to limitations in the use of traditional planning and financial management tools. Restrictions in the use of foreign software when performing an order of the Russian Government, on the one hand, and sanctions limiting the support of the major ERP and MRP II systems in the Russian Federation, on the other hand, entail the necessity to appeal to the basics of developing budgeting and analysis systems for industrial enterprises. Thus, cost calculation theory becomes the theoretical foundation for the development of industrial cost management systems. Based on the foregoing, it would be fair to make an assumption that the development of a working managerial accounting model on an industrial enterprise using an automated enterprise resource management system should rest upon the concept of the inevitability of alterations of business processes. On the other hand, optimized business processes make the architecture of financial analytics more transparent and permit the use of all the benefits of data cubes. The metrics and indicator slices provide online assessment of the state of key business processes at a given moment of time, which improves the quality of managerial decisions considerably. Therefore, the bilateral sanctions situation boosted the development of corporate business analytics and took industrial companies to the next level of understanding of business processes.

Keywords: cost culculation, ERP, OLAP, modern Russian economy

Procedia PDF Downloads 216
4106 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management

Authors: Samuel Quashie

Abstract:

PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.

Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research

Procedia PDF Downloads 379
4105 Effect of Sr-Doping on Multiferroic Properties of Ca₁₋ₓSrₓMn₇O₁₂

Authors: Parul Jain, Jitendra Saha, L. C. Gupta, Satyabrata Patnaik, Ashok K. Ganguli, Ratnamala Chatterjee

Abstract:

This study shows how sensitively and drastically multiferroic properties of CaMn₇O₁₂ get modified by isovalent Sr-doping, namely, in Ca₁₋ₓSrₓMn₇O₁₂ for x as small as 0.01 and 0.02. CaMn₇O₁₂ is a type-II multiferroic, wherein polarization is caused by magnetic spin ordering. In this report magnetic and ferroelectric properties of Ca₁₋ₓSrₓMn₇O₁₂ (0 ≤ x ≤ 0.1) are investigated. Samples were prepared by wet sol gel technique using their respective nitrates; powders thus obtained were calcined and sintered in optimized conditions. The X-ray diffraction patterns of all samples doped with Sr concentrations in the range (0 ≤ x ≤ 10%) were found to be free from secondary phases. Magnetization versus temperature and magnetization versus field measurements were carried out using Quantum Design SQUID magnetometer. Pyroelectric current measurements were done for finding the polarization in the samples. Findings of the measurements are: (i) increase of Sr-doping in CaMn₇O₁₂ lattice i.e. for x ≤ 0.02, increases the polarization, whereas decreases the magnetization and the coercivity of the samples; (ii) the material with x = 0.02 exhibits ferroelectric polarization Ps which is more than double the Ps in the un-doped material and the magnetization M is reduced to less than half of that of the pure material; remarkably (iii) the modifications in Ps and M are reversed as x increases beyond x = 0.02 and for x = 0.10, Ps is reduced even below that for the pure sample; (iv) there is no visible change of the two magnetic transitions TN1 (90 K) and TN2 (48 K) of the pure material as a function of x. The strong simultaneous variations of Ps and M for x = 0.02 strongly suggest that either a basic modification of the magnetic structure of the material or a significant change of the coupling of P and M or possibly both.

Keywords: ferroelectric, isovalent, multiferroic, polarization, pyroelectric

Procedia PDF Downloads 459
4104 Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques

Authors: Kanwal Javid, Shazia Pervaiz, Maria Mumtaz, Muhammad Ameer Nawaz Akram

Abstract:

Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air.

Keywords: carbon sequestration, grasslands, global warming, climate change.

Procedia PDF Downloads 179
4103 In vitro Disaggregation and Dissolution of Four IR Lamotrigine Solid Dosage Forms

Authors: Ilaria Manca, Ilaria Manca, Francesca Pettinau, Ignazia Mocci, Elisabetta M. Usai, Barbara Pittau

Abstract:

Lamotrigine is a phenyltriazine used in the treatment of epilepsy and bipolar disorder type I. The purpose of this study was to test and compare various solid forms of immediate release (IR) lamotrigine products, at different strenghts, in order to study their disaggregation and dissolution behavior. IR products are designed to release their active substance promptly after administration. Concentration of hydrochloric acid in gastric juice is about 0.1-0.001 M, so FDA (Food and Drug Administration) recommends, for lamotrigine regular tablets, dissolution tests in HCl 0.1 M.Toinvestigate the pH dependency of drug release in the entire gastrointestinal tract, we worked at two additional media with different pH values (4.5 and 6.8), that reflect conditions in it. To afford acceptable dissolution rates, tablets must disintegrate. Disaggregation of constituent particles increases the surface area and substantially increases the dissolution rate. For this reason availability of an active substance from tablets depends on its ability to disintegrate fast in dissolution media. pH of gastrointestinal fluid affects drug absorption by conditioning its solubility and dissolution, but also tablet disintegration may be influenced by it. To obtain information about the quantitative relationship between different mixture components, Nuclear Magnetic Resonance (NMR) spectroscopy was used. We also investigate tablet hardness. The investigation carried out confirms pH 1.2 as the ideal environment for the immediate availability of the active substance.

Keywords: dissolution, disaggregation, Lamotrigine, bioequivalence

Procedia PDF Downloads 449
4102 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater

Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai

Abstract:

There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.

Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces

Procedia PDF Downloads 299
4101 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 136
4100 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 265
4099 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 146
4098 Prescribed Organization of Nursing Work and Psychosocial Risks: A Cross-Sectional Study

Authors: Katerine Moraes dos Satons, Gisele Massante Peixoto Tracera, Regina Célia Gollner Zeitoune

Abstract:

To analyze the psychosocial risks related to the organization of nursing work in outpatient clinics of university hospitals. Cross-sectional epidemiological study developed in 11 outpatient units linked to the three public universities of the city of Rio de Janeiro, Brazil. Participants were 388 nursing professionals who worked in patient care at the time of the research. Data were collected from July to December 2018, using a self-applicable instrument. A questionnaire was used for sociodemographic, occupational and health characterization, and the Work Organization Scale. The bivariate analyses were performed using the odds ratio (OR), with a confidence interval of 95%, significance level of 5%. The organization of nursing work received an assessment of medium psychosocial risk by the professionals participating in the research, demanding interventions in the short and medium term. There was no association between sociodemographic, occupational and health characteristics and the organization of outpatient work. Interventional measures should be performed in the psychosocial risk factors presented in this research, with a view to improving the work environment, so that the importance of maintaining satisfactory material conditions is considered, as well as the adequate quantity of human resources. In addition, it aims to expand the spaces of nursing participation in decision- making, strengthening its autonomy as a profession.

Keywords: occupational risks, nursing, nursing team, worker’s health, psychosocial risks

Procedia PDF Downloads 91
4097 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance

Authors: Robert P. Dufresne, Hamid Arabzadeh

Abstract:

The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.

Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.

Procedia PDF Downloads 185
4096 The Attentional Focus Impact on the Decision Making in Three-Game Situations in Tennis

Authors: Marina Tsetseli, Eleni Zetou, Maria Michalopoulou, Nikos Vernadakis

Abstract:

Game performance, besides the accuracy and the quality skills execution, depends heavily on where the athletes will focus their attention while performing a skill. The purpose of the present study was to examine and compare the effect of internal and external focus of attention instructions on the decision making in tennis at players 8-9 years old (M=8.4, SD=0.49). The participants (N=40) were divided into two groups and followed an intervention training program that lasted 4 weeks; first group (N=20) under internal focus of attention instructions and the second group (N=20) under external focus of attention instructions. Three measurements took place (pre-test, post-test, and retention test) in which the participants were video recorded while playing matches in real scoring conditions. GPAI (Game Performance Assessment Instrument) was used to evaluate decision making in three game situations; service, return of the service, baseline game. ANOVA repeated measures (2 groups x 3 measurements) revealed a significant interaction between groups and measurements. Specifically, the data analysis showed superiority of the group that was instructed to focus externally. The high scores of the external attention group were maintained at the same level at the third measurement as well, which indicates that the impact was concerning not only performance but also learning. Thus, cues that lead to an external focus of attention enhance the decision-making skill and therefore the game performance of the young tennis players.

Keywords: decision making, evaluation, focus of attention, game performance, tennis

Procedia PDF Downloads 347
4095 The Use of Phototherapy with Unusual Case Studies in Counselling

Authors: Briar Schulz

Abstract:

The use of phototherapy within the counselling room offers significant advantages in extending far beyond typical "talk therapy" avenues. The benefits of using this approach are numerous and include: efficiency in recalling pertinent information in addition to utilizing a visual lens that often captures opulent detail that can be eluded in traditional dialogue. The goal of this presentation is to provide conference attendees with an opportunity to understand the therapeutic benefits and creative possibilities of incorporating photography into the clinical counselling process. This includes practical strategies for using in specific case studies, where studies of phototherapy have previously been limited. Ethical considerations and limitations to the process will also be addressed. Attendees will observe the benefits of using phototherapy with six longitudinal case studies including: a 30 year old female, with anorexia nervosa; a 22 year old self-harming individual with obsessive compulsive disorder; a 24 year old client with developmental delays, and bipolar disorder; a 14 year old client with Autism; and two clients with rare medical conditions struggling with depression and anxiety, one 21 years old and the other 16 years old. Aspects of each case will be linked to various theoretical modalities to highlight the efficiency and benefits of phototherapy in drawing important clinical conclusions. Furthermore, the use of phototherapy within these clinical areas remains a relatively unexplored area of the literature, and possibilities for future research will be highlighted. Finally, conference attendees will have the opportunity to try various phototherapy strategies within the interactive portion of this presentation. .

Keywords: Atypical, Case studies, Phototherapy, Photovoice

Procedia PDF Downloads 143
4094 Experimental and Numerical Determination of the Freeze Point Depression of a Multi-Phase Flow in a Scraped Surface Heat Exchanger

Authors: Carlos A. Acosta, Amar Bhalla, Ruyan Guo

Abstract:

Scraped surface heat exchangers (SSHE) use a rotor shaft assembly with scraping blades to homogenize viscous fluids during the heat transfer process. Obtaining in-situ measurements is difficult because the rotor and scraping blades spin continuously inside the mixing chamber, obstructing the instrumentation pathway. Computational fluid dynamics simulations provide useful insight into the flow behavior around the scraper blades for a variety of fluids and blade geometries. However, numerical solutions often focus on the fluid dynamics and heat transfer phenomena of rotating flow, ignoring the glass-transition temperature and freezing point depression. This research studies the multi-phase fluid dynamics and freezing point depression inside the SSHE with non-isothermal conditions in a time dependent process using an aqueous solution that contains 13.5 wt.% high fructose corn syrup and CO₂. The computational results were validated with in-situ pressure, temperature, and optical spectroscopy measurements. Results from the numerical model show good quantitatively agreement with experimental values.

Keywords: computational fluid dynamics, freezing point depression, phase-transition temperature, multi-phase flow

Procedia PDF Downloads 143
4093 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky

Authors: Eman Mayah, Raid Hanna

Abstract:

This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.

Keywords: daylight levels, educational building, Façade fenestration, overcast weather

Procedia PDF Downloads 402
4092 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 68
4091 Potential Role of Arbuscular Mycorrhizal (AM) Fungi in CO₂-Sequestration During Bipartite Interaction with Host Plant Oryza Sativa

Authors: Sadhana Shukla, Pushplata Singh, Nidhi Didwania

Abstract:

Arbuscular mycorrhizal (AM) fungi are a highly advantageous and versatile group of fungi that significantly contribute to the formation of soil organic matter by creating a demand for plant carbon (C) and distributing it through below-ground hyphal biomass, regardless of their substantial contribution in enhancing net primary productivity and accumulating additional photosynthetic fixed C in the soil. The genetic role of AM fungi in carbon cycling is largely unexplored. In our study, we propose that AM fungi significantly interact with the soil, particularly: the provision of photosynthates by plants. We have studied the expression of AM fungi genes involved in CO₂ sequestration during host-plant interaction was investigated by qPCR studies. We selected Rhizophagus proliferus (AM fungi) and Oryza sativa (Rice) (inoculated with or without 200ppg AMF inoculums per plant) and investigated the effect of AM fungi on soil organic carbon (SOC) and rice growth under field conditions. Results thus provided faster SOC turnover, 35% increased nutrient uptake in plants and pronounced hyphal biomass of AM fungi which enhanced soil carbon storage by 15% in comparison to uninoculated plants. This study will offer a foundation for delving into various carbon-soil studies while also advancing our comprehension of the relationship between AM fungi and the sustainability of agricultural ecosystems.

Keywords: arbuscular mycorrhizal (AM) fungi, carbon sequestration, gene expression, soil health, plant development.

Procedia PDF Downloads 68
4090 Sociodemographic Approach to Juveniles Directed to Delinquent Behaviour in Zonguldak

Authors: Riza Yilmaz, Samet Kiyak, Sezin Nur Yilmaz, Yasemin Yilmaz

Abstract:

Child delinquency has been increasing in our country as well as in many countries of the world. Child intelligence, abilities, family's social environment and life conditions are the factors which affect the child delinquency. The reports of 73 cases ages of 12-15 which were sent to the University of Bulent Ecevit, School of Medicine, Forensic Medicine Department between January 2011-September 2015, in order to evaluate medically, children pushed to crime by the judicial authorities are examined in terms of age, gender, educational background, place of residence, reasons for being sent, whether it’s a repeating crime or not, type of intelligence test, results revealed by forensic medicine and department of mental and neurological disorders. When children pushed to crime examined in terms of their crimes, the most common type of crime was identified as theft (n = 24). The crimes with 19 physical attacks and 12 sexual abuse were seen. Following that other 12 crimes were determined as damage to property, hemp crop, insult, incitement to crime, forgery of private documents, illegal excavation, threatening, involuntary manslaughter. The alleged crimes in 6 cases were more than one. The children pushed to crime are one of the major social problems of many countries. In this sense, it is not only the responsibility of government agencies to protect children pushed to crime, also, the civil society organizations should take place in this struggle.

Keywords: delinquent behaviour, forensic medicine, crime, punishment

Procedia PDF Downloads 431
4089 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 166
4088 Advanced Textiles for Soldier Clothes Based on Coordination Polymers

Authors: Hossam E. Emam

Abstract:

The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.

Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent

Procedia PDF Downloads 177