Search results for: surface chloride concentration
4344 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water
Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri
Abstract:
This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)
Procedia PDF Downloads 4644343 Emotional Labor Strategies and Intentions to Quit among Nurses in Pakistan
Authors: Maham Malik, Amjad Ali, Muhammad Asif
Abstract:
Current study aims to examine the relationship of emotional labor strategies - deep acting and surface acting - with employees' job satisfaction, organizational commitment and intentions to quit. The study also examines the mediating role of job satisfaction and organizational commitment for relationship of emotional labor strategies with intentions to quit. Data were conveniently collected from 307 nurses by using self-administered questionnaire. Linear regression test was applied to find the relationship between the variables. Mediation was checked through Baron and Kenny Model and Sobel test. Results prove the existence of partial mediation of job satisfaction between the emotional labor strategies and quitting intentions. The study recommends that deep acting should be promoted because it is positively associated with quality of work life, work engagement and organizational citizenship behavior of employees.Keywords: emotional labor strategies, intentions to quit, job satisfaction, organizational commitment, nursing
Procedia PDF Downloads 1524342 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop
Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj
Abstract:
In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.
Procedia PDF Downloads 5194341 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect
Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti
Abstract:
Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity
Procedia PDF Downloads 4324340 Phytochemical Profile and in Vitro Bioactivity Studies on Two Underutilized Vegetables in Nigeria
Authors: Borokini Funmilayo Boede
Abstract:
B. alba L., commonly called ‘Amunututu’ and Solanecio biafrae called ‘Worowo’ among the Yoruba tribe in the southwest part of Nigeria are reported to be of great ethnomedicinal importance but are among many underutilized green leafy vegetables in the country. Many studies have established the nutritional values of these vegetables, utilization are very poor and indepth information on their chemical profiles is scarce. The aqueous, methanolic and ethanolic extracts of these vegetables were subjected to phytochemical screening and phenolic profiles of the alcoholic extracts were characterized by using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Total phenol and flavonoid contents were determined, antioxidant activities were evaluated using five in vitro assays to assess DPPH, nitric oxide and hydroxyl radical-scavenging abilities, as well as reducing power with ferric reducing antioxidant assay and phosphomolybdate method. The antibacterial activities of the extracts against Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi were evaluated by using agar well diffusion method and the antifungal activity evaluated against food-associated filamentous fungi by using poisoned food technique with the aim of assessing their nutraceutical potentials to encourage their production and utilization. The results revealed the presence of saponnin, steroids, tannin, terpenoid and flavonoid as well as phenolic compounds: gallic acid, chlorogenic acid, caffeic acid, coumarin, rutin, quercitrin, quercetin and kaemferol. The vegetables showed varying concentration dependent reducing and radical scavenging abilities from weak to strong compared with gallic acid, rutin, trolox and ascorbic acid used as positive controls; the aqueous extracts which gave higher concentrations of total phenol displayed higher ability to reduce Fe (lll) to Fe (ll) and stronger inhibiting power against hydroxyl radical than the alcoholic extracts and in most cases exhibited more potency than the ascorbic acids used as positive controls, at the same concentrations, whereas, methanol and / or ethanol extracts were found to be more effective in scavenging 2, 2-diphenyl-1-picryl hydrazyl radical and showed higher ability to reduce Mo (VI) to Mo (V) in total antioxidant assay than the aqueous extracts. However, the inhibition abilities of all the extracts against nitric oxide were comparable with the ascorbic acid control at the same concentrations. There were strong positive correlations with total phenol (mg GAE/g) and total flavonoid (mg RE/g) contents in the range TFC (r=0.857- 0999 and r= 0.904-1.000) and TPC (r= 0.844- 0.992 and r= 0.900 -0.999) for Basella alba and Senecio biafrae respectively. Inhibition concentration at 50 % (IC50) for each extract to scavenge DPPH, OH and NO radicals ranged from 32.73 to 1.52 compared with control (0.846 - -6.42) mg/ml. At 0.05g/ml, the vegetables were found to exhibit mild antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi compared with streptomycin sulphate used as control but appreciable antifungi activities against (Trichoderma rubrum and Aspergillus fumigates) compared with bonlate antibiotic positive control. The vegetables possess appreciable antioxidant and antimicrobial properties for promoting good health, their cultivation and utilization should be encouraged especially in the face of increasing health and economic challenges and food insecurity in many parts of the world.Keywords: antimicrobial, antioxidants, extracts, phytochemicals
Procedia PDF Downloads 3304339 Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear
Authors: Kamal Haider
Abstract:
Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data.Keywords: landing gear, computational aeroacoustics, computational aerodynamics, detached eddy simulation
Procedia PDF Downloads 2894338 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.Keywords: drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts
Procedia PDF Downloads 3334337 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles
Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu
Abstract:
To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.Keywords: adsorption, bagasse, extraction, nanoparticles, recovery
Procedia PDF Downloads 1594336 Factors Influencing an Implementation of Financial Participation Programmes in Polish Companies - Some Relationships
Authors: Maciej Kozlowski, Agnieszka Piotrowska-Piatek
Abstract:
Purpose: This article analyses the most important financial participation programmes (FPP) in Poland to show the relationship between the programmes applied and the socio-economic results of enterprises and assesses the impact of participation on these results and the impact of selected factors on the introduction of FPP. Methodology: The research has been based on a questionnaire answered by senior management of listed Polish companies that had at least one out of three major FPPs in operation, namely share ownership, profit-sharing, or a stock option scheme. Findings: The results of the empirical study conducted indicate the existence of some peculiar relationships. The vast majority of schemes in Polish public companies are aimed at the participation of the management personnel; these programmes are narrow-based (only for management) and rather hermetic, with a high concentration of stocks or shares in the hands of the management. Conclusion: FPPs generally have a positive influence on enterprise functioning. However, the effects are more social than economic (no significant economic improvement after programme implementation). The paper contributes to the debate about financial participation and suggests actions to popularize these programmes on a wider scale.Keywords: financial participation, profit sharing, stock options, worker attitude, worker ownership
Procedia PDF Downloads 1464335 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities
Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization
Procedia PDF Downloads 7874334 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents
Authors: Sutapa Mondal Roy, Suban K. Sahoo
Abstract:
The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery
Procedia PDF Downloads 3914333 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: laser cladding, temperature, profile, microstructure
Procedia PDF Downloads 2274332 The Projections of Urban Climate Change Using Conformal Cubic Atmospheric Model in Bali, Indonesia
Authors: Laras Tursilowati, Bambang Siswanto
Abstract:
Urban climate change has short- and long-term implications for decision-makers in urban development. The problem for this important metropolitan regional of population and economic value is that there is very little usable information on climate change. Research about urban climate change has been carried out in Bali Indonesia by using Conformal Cubic Atmospheric Model (CCAM) that runs with Representative Concentration Pathway (RCP)4.5. The history data means average data from 1975 to 2005, climate projections with RCP4.5 scenario means average data from 2006 to 2099, and anomaly (urban climate change) is RCP4.5 minus history. The results are the history of temperature between 22.5-27.5 OC, and RCP4.5 between 25.5-29.5 OC. The temperature anomalies can be seen in most of northern Bali that increased by about 1.6 to 2.9 OC. There is a reduced humidity tendency (drier) in most parts of Bali, especially the northern part of Bali, while a small portion in the south increase moisture (wetter). The comfort index of Bali region in history is still relatively comfortable (20-26 OC), but on the condition RCP4.5 there is no comfortable area with index more than 26 OC (hot and dry). This research is expected to be useful to help the government make good urban planning.Keywords: CCAM, comfort index, IPCC AR5, temperature, urban climate change
Procedia PDF Downloads 1474331 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications
Authors: Swati Mishra
Abstract:
In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy
Procedia PDF Downloads 1514330 Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal
Authors: Mozhgan Mohammadi, Arezoo Ghadi
Abstract:
Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase.Keywords: black seed pulp, bio-sorbents, treatment of sorbents, adsorption isotherms
Procedia PDF Downloads 1034329 The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study
Authors: Yaser S. Kishawi, Sadi R. Ali
Abstract:
Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.Keywords: soil aquifer treatment, recovery reuse scheme, infiltration basins, North Gaza
Procedia PDF Downloads 2084328 Characterization of Triterpenoids Antimicrobial Potential in Ethyl Acetate Extracts from Aerial Parts of Deinbollia Pinnata
Authors: Rufai Yakubu And Suleiman Kabiru
Abstract:
Triterpenoids are a diverse class of secondary metabolites with potential antimicrobial properties. In this study, the crude extracts from ethyl acetate was obtained with ultrasonic extraction method. Using a combined chromatographic separation method to isolate squalene (1) stigmasterol (2), stigmasta-5,22-diene-3-ol acetate (3), γ-sitosterol (4), lupeol (5), taraxasterol (6), and betulinic acid (7) from ethyl acetate extracts. Ethyl acetate crude extracts and isolated compounds were both screened for antimicrobial activity and minimum inhibitory concentration (MIC). For ethyl acetate crude extracts with concentrations of (1.5, 0.75, 0.35, & 0.168 mg/mL) indicated marginal antibacterial activity with a range of 17, 20 and 14 mm zone of inhibition for Staphylococcus aureus, Escherichia coli and Candida albicans and lower minimum inhibitory concentrations ranges from 18.75 µg/ml to 150 µg/mL. Butulinic acid showed the highest activity against E. coli and C. albicans at 15 mm and 15 mm followed by Lupeol against S. aureus, E. coli and C. albicans at 13, 12, 12 mm. Moreso, no antimicrobial activity for both S. aureus and C. albicans with squalene except for E. coli which showed activity at 11 mm with 300 µg/mL (MIC). Thus, abundant triterpenoids in Deinbollia pinnata will be another centered area for antimicrobial drug discovery.Keywords: triterpenoid, antimicrobial potentials, deinbollia pinnata, aerial parts
Procedia PDF Downloads 754327 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier
Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)
Procedia PDF Downloads 2844326 Characterization of Cement Concrete Pavement
Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra
Abstract:
The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis
Procedia PDF Downloads 4034325 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus
Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana
Abstract:
Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate
Procedia PDF Downloads 1404324 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules
Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman
Abstract:
Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.Keywords: halal, real-time PCR, gelatine, chemometrics
Procedia PDF Downloads 2434323 Sorption of Crystal Violet from Aqueous Solution Using Chitosan−Charcoal Composite
Authors: Kingsley Izuagbe Ikeke, Abayomi O. Adetuyi
Abstract:
The study investigated the removal efficiency of crystal violet from aqueous solution using chitosan-charcoal composite as adsorbent. Deproteination was carried out by placing 200g of powdered snail shell in 4% w/v NaOH for 2hours. The sample was then placed in 1% HCl for 24 hours to remove CaCO3. Deacetylation was done by boiling in 50% NaOH for 2hours. 10% Oxalic acid was used to dissolve the chitosan before mixing with charcoal at 55°C to form the composite. The composite was characterized by Fourier Transform Infra-Red and Scanning Electron Microscopy measurements. The efficiency of adsorption was evaluated by varying pH of the solution, contact time, initial concentration and adsorbent dose. Maximum removal of crystal violet by composite and activated charcoal was attained at pH10 while maximum removal of crystal violet by chitosan was achieved at pH 8. The results showed that adsorption of both dyes followed the pseudo-second-order rate equation and fit the Langmuir and Freundlich isotherms. The data showed that composite was best suited for crystal violet removal and also did relatively well in the removal of alizarin red. Thermodynamic parameters such as enthalpy change (ΔHº), free energy change (ΔGº) and entropy change (ΔSº) indicate that adsorption process of Crystal Violet was endothermic, spontaneous and feasible respectively.Keywords: crystal violet, chitosan−charcoal composite, extraction process, sorption
Procedia PDF Downloads 4414322 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow
Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez
Abstract:
Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n
Procedia PDF Downloads 2864321 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics
Authors: Arindam Pramanik, Parimal Karmakar
Abstract:
We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery
Procedia PDF Downloads 4904320 Study of Chlorine Gas Leak Consequences in Direct Chlorination System Failure in Cooling Towers in the Petrochemical Industry
Authors: Mohammad H. Ruhipour, Mahdi Goharrokhi, Mahsa Ghasemi, Artadokht Ostadsarayi
Abstract:
In this paper, we are aiming to study the consequences of chlorine gas leak in direct chlorine gas injection compared to using bleach (sodium hypochlorite), studying the negative effects both on the environment and individuals. This study was performed in the cooling towers of a natural fractioning unit of Bandar-e-IMAM petrochemical plant. Considering that chlorine gas is highly toxic and based on the health regulation, its release into the surrounding environment can be very dangerous for people and even fatal for individuals. We studied performing quantitative studies in the worst cases of event incidence. In addition, studying alternative methods with a lower risk was also on the agenda to select the least likely possible option causing an accident. In this paper chlorine gas release consequences have been evaluated by using PHAST software. Reaching to 10 ppm of chlorine gas concentration was basis of hazardous area determination. The results show that the full chlorine gas line rupture scenario in Pasquill category F, were worst case, and many people could be harmed around cooling towers area because of chlorine gas inhalation.Keywords: chlorine gas, consequence modeling, cooling towers, direct chlorination, risk assessment, system failure
Procedia PDF Downloads 2964319 Compressive Response of Unidirectional Basalt Fiber/Epoxy/MWCNTs Composites
Authors: Reza Eslami-Farsani, Hamed Khosravi
Abstract:
The aim of this work is to study the influence of multi-walled carbon nanotubes (MWCNTs) addition at various contents with respect to the matrix (0-0.5 wt.% at a step of 0.1 wt.%) on the compressive response of unidirectional basalt fiber (UD-BF)/epoxy composites. Toward this end, MWCNTs were firstly functionalized with 3-glycidoxypropyltrimethoxysilane (3-GPTMS) to improve their dispersion state and interfacial compatibility with the epoxy. Subsequently, UD-BF/epoxy and multiscale 3-GPTMS-MWCNTs/UD-BF/epoxy composites were prepared. The mechanical properties of the composites were determined by quasi-static compression test. The compressive strength of the composites was obtained through performing the compression test on the off-axis specimens and extracting their longitudinal compressive strength. Results demonstrated that the highest value in compressive strength was attained at 0.4 wt.% MWCNTs with 41% increase, compared to the BF/epoxy composite. Potential mechanisms behind these were implied.Keywords: multiscale polymeric composites, unidirectional basalt fibers, multi-walled carbon nanotubes, surface modification, compressive properties
Procedia PDF Downloads 3114318 A New Design of Vacuum Membrane Distillation Module for Water Desalination
Authors: Adnan Alhathal Alanezi
Abstract:
The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module
Procedia PDF Downloads 934317 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy
Procedia PDF Downloads 3634316 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)
Procedia PDF Downloads 4364315 Performance of Buildings with Base-Isolation System under Geometric Irregularities
Authors: Firoz Alam Faroque, Ankur Neog
Abstract:
Earthquake causes significant loss of lives and severe damage to infrastructure. Base isolator is one of the most suitable solutions to make a building earthquake resistant. Base isolation consists of installing an isolator along with the steel plates covered with pads of strong material like steel, rubber, etc. In our study, we have used lead rubber bearing (LRB). The basic idea of seismic isolation is based on the reduction of the earthquake-induced inertia forces by shifting the fundamental period of the structure out of dangerous resonance range, and concentration of the deformation and energy dissipation demands at the isolation and energy dissipation systems, which are designed for this purpose. In this paper, RC frame buildings have been modeled and analyzed by response spectrum method using ETABS software. The LRB used in the model is designed as per uniform building code (UBC) 97. It is found that time period for the base isolated structures are higher than that of the fixed base structure and the value of base shear significantly reduces in the case of base-isolated buildings. It has also been found that buildings with vertical irregularities give better performance as compared to building with plan irregularities using base isolators.Keywords: base isolation, base shear, irregularities in buildings, lead rubber bearing (LRB)
Procedia PDF Downloads 329