Search results for: structured gravity model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19605

Search results for: structured gravity model

12915 City Image of Rio De Janeiro as the Host City of 2016 Olympic Games

Authors: Luciana Brandao Ferreira, Janaina de Moura Engracia Giraldi, Fabiana Gondim Mariutti, Marina Toledo de Arruda Lourencao

Abstract:

Developing countries, such as BRICS (Brazil, Russia, India, China and South Africa) are hosting sports mega-events to promote socio-economic development and image enhancement. Thus, this paper aims to verify the image of Rio de Janeiro, in Brazil, as the host city of 2016 Olympic Games, considering the main cognitive and affective image dimensions. The research design uses exploratory factorial analysis to find the most important factors highlighted in the city image dimensions. The data were collected by structured questionnaires with an international respondents sample (n=274) with high international travel experience. The results show that Rio’s image as a sport mega-event host city has two main factors in each dimension: Cognitive ('General Infrastructure'; 'Services and Attractions') and Affective ('Positive Feelings'; 'Negative Feelings'). The most important factor related to cognitive dimension was 'Services and Attractions' which is more related to tourism activities. In the affective dimension 'Positive Feelings' was the most important factor, which means a good result considering that is a city in an emerging country with many unmet social demands.

Keywords: Rio de Janeiro, 2016 olympic games, host city image, cognitive image dimension, affective image dimension

Procedia PDF Downloads 149
12914 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: distributed control system, identification of risks, information technology, process automation system

Procedia PDF Downloads 144
12913 The Effects of Learning Engagement on Interpreting Performance among English Major Students

Authors: Jianhua Wang, Ying Zhou, Xi Zhang

Abstract:

To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.

Keywords: learning engagement, interpreting performance, interpreter training, English major students

Procedia PDF Downloads 210
12912 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 118
12911 Transfer of Business Anti-Corruption Norms in Developing Countries: A Case Study of Vietnam

Authors: Candice Lemaitre

Abstract:

During the 1990s, an alliance of international intergovernmental and non-governmental organizations proposed a set of regulatory norms designed to reduce corruption. Many governments in developing countries, such as Vietnam, enacted these global anti-corruption norms into their domestic law. This article draws on empirical research to understand why these anti-corruption norms have failed to reduce corruption in Vietnam and many other developing countries. Rather than investigating state compliance with global anti-corruption provisions, a topic that has already attracted considerable attention, this article aims to explore the comparatively under-researched area of business compliance. Based on data collected from semi-structured interviews with business managers in Vietnam and archival research, this article examines how businesses in Vietnam interpret and comply with global anti-corruption norms. It investigates why different types of companies in Vietnam engage with and respond to these norms in different ways. This article suggests that global anti-corruption norms have not been effective in reducing corruption in Vietnam because there is fragmentation in the way companies in Vietnam interpret and respond to these norms. This fragmentation results from differences in the epistemic (or interpretive) communities that companies draw upon to interpret global anti-corruption norms. This article uses discourse analysis to understand how the communities interpret global anti-corruption norms. This investigation aims to generate some predictive insights into how companies are likely to respond to anti-corruption regimes based on global anti-corruption norms.

Keywords: anti-corruption, business law, legal transfer, Vietnam

Procedia PDF Downloads 162
12910 The First Transcriptome Assembly of Marama Bean: An African Orphan Crop

Authors: Ethel E. Phiri, Lionel Hartzenberg, Percy Chimwamuromba, Emmanuel Nepolo, Jens Kossmann, James R. Lloyd

Abstract:

Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy.

Keywords: 101 African orphan crops, RNA-Seq, Tylosema esculentum, underutilised crop plants

Procedia PDF Downloads 361
12909 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 345
12908 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 352
12907 Key Factors Influencing Individual Knowledge Capability in KIFs

Authors: Salman Iqbal

Abstract:

Knowledge management (KM) literature has mainly focused on the antecedents of KM. The purpose of this study is to investigate the effect of specific human resource management (HRM) practices on employee knowledge sharing and its outcome as individual knowledge capability. Based on previous literature, a model is proposed for the study and hypotheses are formulated. The cross-sectional dataset comes from a sample of 19 knowledge intensive firms (KIFs). This study has run an item parceling technique followed by Confirmatory Factor Analysis (CFA) on the latent constructs of the research model. Employees’ collaboration and their interpersonal trust can help to improve their knowledge sharing behaviour and knowledge capability within organisations. This study suggests that in future, by using a larger sample, better statistical insight is possible. The findings of this study are beneficial for scholars, policy makers and practitioners. The empirical results of this study are entirely based on employees’ perceptions and make a significant research contribution, given there is a dearth of empirical research focusing on the subcontinent.

Keywords: employees’ collaboration, individual knowledge capability, knowledge sharing, monetary rewards, structural equation modelling

Procedia PDF Downloads 279
12906 Barriers and Facilitators to Inclusive Programming for Children with Mental and/or Developmental Challenges: A Participatory Action Research of Perspectives from Families and Professionals

Authors: Minnie Y. Teng, Kathy Xie, Jarus Tal

Abstract:

Rationale: The traditional approach to community programs for children with mental and/or developmental challenges often involves segregation from typically-developing peers. However, studies show that inclusive education improves children’s quality of life, self-concept, and long term health outcomes. Investigating factors that influence inclusion can thus have important implications in the design and facilitation of community programs such that all children - across a spectrum of needs and abilities - may benefit. Objectives: This study explores barriers and facilitators to inclusive community programming for children aged 0 to 12 with developmental/mental challenges. Methods: Using a participatory-action research methodology, semi-structured focus groups and interviews will be used to explore perspectives of sighted students, instructors, and staff. Data will be transcribed and coded thematically. Practice Implications or Results: By having a deeper understanding of the barriers and facilitators to inclusive programming in the community, researchers can work with the broader community to facilitate inclusion in children’s community programs. Conclusions: Expanding inclusive practices may improve the health and wellbeing of the pediatric populations with disabilities, which consistently reports lower levels of participation. These findings may help to identify gaps in existing practices and ways to approach them.

Keywords: aquatic programs, children, disabilities, inclusion, community programs

Procedia PDF Downloads 121
12905 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 118
12904 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 152
12903 Personality as a Predictor of Knowledge Hiding Behavior: Case Study of Alpha Electronics

Authors: Sadeeqa Khan, Muhammad Usman

Abstract:

Employees’ knowledge hiding behaviors can be detrimental to employees’ interpersonal relationships and individual and organizational learning and creativity. However, to the best of the authors’ knowledge, the literature on the contingencies, antecedents and outcomes of employees’ knowledge hiding behaviors is still in its infancy. On the other hand, not everyone who hides knowledge hides it the same way, as individuals are different, so do their behaviors. This study explores the links between employees’ personality traits and their knowledge hiding behaviors. By using a single case study as a research methodology and collecting data through 28 semi-structured interviews from employees working in Alpha Electronics (the pseudo name of the company to ascertain anonymity) operating in Pakistan, we foreground the patterns of relationships between employees’ personality traits and knowledge hiding behaviors – rationalized hiding, evasive hiding and playing dumb. Our findings suggest that employees high on extraversion involve in evasive knowledge hiding; while employees low on extraversion (introverts) demonstrate rationalized hiding. Moreover, both extrovert and introvert employees involve in playing dumb in situations that involve risk for their jobs and careers. For instance, when knowledge is requested from their managers, both extrovert and introvert employees tend to play dumb, as in such cases, evasive and rationalized hiding can be harmful to their job and career-related interests and motives. Other than theoretical contributions, the study offers important implications for organizations faced with the challenges of shortage of skills and knowledge.

Keywords: knowledge hiding, personality, rationalized hiding, playing dumb, evasive hiding

Procedia PDF Downloads 217
12902 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach

Procedia PDF Downloads 281
12901 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks

Authors: Walid Fantazi

Abstract:

The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.

Keywords: WSN, indexing data, SOA, RIA, geographic information system

Procedia PDF Downloads 259
12900 The Empowerment of Reminiscence Group Play Therapy for Older People in Taiwan

Authors: Jiun-De Lin

Abstract:

The main purpose of this study was to investigate the empowerment effect of the older people through a structured reminiscence play therapeutic group program in Changhua county of Taiwan. This program was used Taiwanese traditional culture as the main concept based on the topic of reminiscence. In order to assimilate into the process for older people, thematic group activities were easy to operate. During the reminiscence play activities, they would improve their personal control and competence, the same as empowerment. A counselor who acted as a group leader led 10 elderly people participated in this reminiscence group play therapy. The participants of the study were 10 older people consisting of 7 males and 3 females who lived in a rehabilitation center in Changhua county of Taiwan. The participants’ average age was 72.5 years old. The study adopted the methods of survey research and the instruments in this study included subjects’ demographic information and the empowerment inventory for adults. A one-group pretest-posttest design was adopted by researchers to test the study hypothesis. The collected data were analyzed by descriptive statistics, and Wilcoxon matched paired signed-ranks test. The main finding of this study was that the reminiscence group play therapy had a significant effect (Z= 2.382, p < .05) to promote the state of empowerment of older people participated in this group play therapy. Based on the conclusion of this study, the suggestions and implications were proposed for the practices and future research.

Keywords: empowerment, group play therapy, older people, reminiscence

Procedia PDF Downloads 156
12899 Minimum Pension Guarantee in Funded Pension Schemes: Theoretical Model and Global Implementation

Authors: Ishay Wolf

Abstract:

In this study, the financial position of pension actors in the market during the pension system transition toward a more funded capitalized scheme is explored, mainly via an option benefit model. This is enabled by not considering the economy as a single earning cohort. We analytically demonstrate a socio-economic anomaly in the funded pension system, which is in favor of high earning cohorts on at the expense of low earning cohorts. This anomaly is realized by a lack of insurance and exposure to financial and systemic risks. Furthermore, the anomaly might lead to pension re-reform back to unfunded scheme, mostly due to political pressure. We find that a minimum pension guarantee is a rebalance mechanism to this anomaly, which increases the probability to of the sustainable pension scheme. Specifically, we argue that implementing the guarantee with an intra-generational, risk-sharing mechanism is the most efficient way to reduce the effect of this abnormality. Moreover, we exhibit the convergence process toward implementing minimum pension guarantee in many countries which have capitalized their pension systems during the last three decades, particularly among Latin America and CEE countries.

Keywords: benefits, pension scheme, put option, social security

Procedia PDF Downloads 125
12898 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 132
12897 Modeling of a Small Unmanned Aerial Vehicle

Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader

Abstract:

Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: UAV, equations of motion, modeling, linearization

Procedia PDF Downloads 748
12896 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 60
12895 Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement

Authors: Trudon Kabangu Mpinga, Ruth Mutala, Shaloom Mbambu, Yvette Kalubi Kashama, Kabeya Mukeba Yakasham

Abstract:

A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways.

Keywords: aircraft, modeling, simulation, yakam matrix, contact, wet runway

Procedia PDF Downloads 20
12894 Training Programmes at KwaZulu Natal, South Africa for Water Professionals to Enhance Water Management

Authors: Joshua Ikpimi, Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Training programmes are integral parts of development for employees to develop themselves and also to develop the organisation. Lack of training and inadequate training adversely affect the productivity in any organisation. Lack of training in the water sector can impair development and improper management of water. Training programs are given to water professionals, especially in a developing country like South Africa, to perform well in their day to day activities. The aim of this study was to evaluate the current training program in place for water professionals at KwaZulu Natal province of South Africa. The objectives were to determine the training programs that are suitable for their job descriptions and to determine the gaps with the training programs and to make recommendations on ways to improve the training programs. This study is a quantitative study which enabled an evaluation of training programs for KwaZulu Natal water professionals. The sample population was 120 professionals across all the cities and towns in KwaZulu Natal province. The water professionals were evaluated using structured questionnaire distributed to the respondents from September to December 2017. The data was analysed using R software. The study found that province has training programs that are valuable for their water professionals. However, involvement of some professionals in administrative activities was hindered by some inappropriate training. Many areas of improvement are suggested to the province in training its water professionals. Training was found to improve performance, commitment, motivation and staff retention of water professionals in the province.

Keywords: KwaZulu Natal, performance, training, water

Procedia PDF Downloads 195
12893 Wine Tourism in Rural Russia: Perceptions of Vineyard Managers

Authors: Jeremy Schultz

Abstract:

The purpose of this study was to understand the perceptions of vineyard managers in the Krasnodar Region of Southern Russia located between the city of Kransnodar and the Black Sea. In recent years, wine tourism throughout the region has seen tremendous growth due in part to the concurrent growth in the number of tourists vacationing at the Black Sea. This trend has contributed to the development of large-scale wine operations developing in numerous rural locations along the tourists’ travel path. Niche areas of tourism, such as wine tourism, have proven to provide economic viability for rural communities all around the world. Understanding their shared group characteristics while honoring their unique qualities as individuals aids in responsible wine tourism development that provides a sense of well-being for the communities and stakeholders involved. Semi-structured interviews and lived experience methodologies were used in locations that were associated with wine food tourism operations. By understanding management perspectives, it lends insight into sustainable destination management and wine tourism product development, furthering our progress toward ethical, responsible, and financially feasible operations. This research also represents a collaborative effort between Russia and the United States that supports an agenda of sustainable destination development and management. As a global community, we need to continue to investigate stakeholder perceptions and strategic management techniques that best support the pillars upon which responsible tourism was founded.

Keywords: wine tourism, tourism development, Russia, rural tourism

Procedia PDF Downloads 142
12892 The Special Testimony as a Methodology for Social Workers to Ensure the Rights of Children and Adolescents Who Are Victims of Sexual Violence

Authors: Natany Rodrigues De Carvalho, Denise Bomtempo Birche De Carvalho

Abstract:

The purpose of this study is to analyze the Special Testimony as a methodology for social workers to ensure the rights of children and adolescents who are victims of sexual violence. The specific objectives are: a) to contextualize, through the specialized literature, the social history of childhood and adolescence; b) to investigate, in the scientific literature, the sexual violence against children and adolescents as an analytical category; c) identify, with the social workers, if there is any defense of children and adolescents in the special testimony. To answer the research objectives we use qualitative research, in three axes that complement each other: a) participant observation through the insertion in the research field (supervised internship I and II); b) survey of literature on the subject; c) semi-structured interviews with social workers of the TJDFT. We used content analysis to systematize and interpret the collected data. The results of the research were organized into three chapters with the following contents: a) literature review, contextualizing the social history of childhood and adolescence to the present; b) sexual violence against children and adolescents and their categories of analysis; c) understanding of the special testimony in the Federal District and Territories in guaranteeing the rights of children and adolescents, identifying their main points from the perspective of social workers. The results showed how the lack of interdisciplinarity in the Special Testimony can lead to the non-integral protection of children and adolescents victims of sexual violence.

Keywords: childhood and adolescence, sexual violence, special testimony, social work

Procedia PDF Downloads 324
12891 Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos

Authors: Dimitra Marini, Konstantinos Bakogiannis, Spyros Polychronopoulos, Georgios Kouroupetroglou

Abstract:

Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology.

Keywords: archaeomusicology, digital waveguides, musical acoustics, physical modeling

Procedia PDF Downloads 118
12890 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs

Procedia PDF Downloads 166
12889 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies

Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari

Abstract:

A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.

Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand

Procedia PDF Downloads 161
12888 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 507
12887 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 167
12886 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 24