Search results for: students with learning disabilities
4240 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1074239 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1294238 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters
Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel
Abstract:
Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.Keywords: craniofacial, gender, odontometric, stature
Procedia PDF Downloads 1944237 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships
Authors: Shelley Y. Hawkins
Abstract:
Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth
Procedia PDF Downloads 2464236 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1464235 Using Chatbots to Create Situational Content for Coursework
Authors: B. Bricklin Zeff
Abstract:
This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.Keywords: chatbot, nursing, pragmatics, role-play, AI
Procedia PDF Downloads 704234 Language Teachers as Materials Developers in China: A Multimethod Approach
Authors: Jiao Li
Abstract:
Language teachers have been expected to play diversified new roles in times of educational changes. Considering the critical role that materials play in teaching and learning, language teachers have been increasingly involved in developing materials. Using identity as an analytic lens, this study aims to explore language teachers’ experiences as materials developers in China, focusing on the challenges they face and responses to them. It will adopt a multimethod approach. At the first stage, about 12 language teachers who have developed or are developing materials will be interviewed to have a broad view of their experiences. At the second stage, three language teachers who are developing materials will be studied by collecting interview data, policy documents, and data obtained from online observation of their group meetings so as to gain a deeper understanding of their experiences in materials development. It is expected that this study would have implications for teacher development, materials development, and curriculum development as well.Keywords: educational changes, teacher development, teacher identity, teacher learning, materials development
Procedia PDF Downloads 1324233 Potentials for Learning History through Role-Playing in Virtual Reality: An Exploratory Study on Role-Playing on a Virtual Heritage Site
Authors: Danzhao Cheng, Eugene Ch'ng
Abstract:
Virtual Reality technologies can reconstruct cultural heritage objects and sites to a level of realism. Concentrating mostly on documenting authentic data and accurate representations of tangible contents, current virtual heritage is limited to accumulating visually presented objects. Such constructions, however, are fragmentary and may not convey the inherent significance of heritage in a meaningful way. In order to contextualise fragmentary historical contents where history can be told, a strategy is to create a guided narrative via role-playing. Such an approach can strengthen the logical connections of cultural elements and facilitate creative synthesis within the virtual world. This project successfully reconstructed the Ningbo Sanjiangkou VR site in Yuan Dynasty combining VR technology and role-play game approach. The results with 80 pairs of participants suggest that VR role-playing can be beneficial in a number of ways. Firstly, it creates thematic interactivity which encourages users to explore the virtual heritage in a more entertaining way with task-oriented goals. Secondly, the experience becomes highly engaging since users can interpret a historical context through the perspective of specific roles that exist in past societies. Thirdly, personalisation allows open-ended sequences of the expedition, reinforcing user’s acquisition of procedural knowledge relative to the cultural domain. To sum up, role-playing in VR poses great potential for experiential learning as it allows users to interpret a historical context in a more entertaining way.Keywords: experiential learning, maritime silk road, role-playing, virtual heritage, virtual reality
Procedia PDF Downloads 1704232 Constellating Images: Bilderatlases as a Tool to Develop Criticality towards Visual Culture
Authors: Quirijn Menken
Abstract:
Menken, Q. Author Constellating Images Abstract—We live in a predominantly visual era. Vastly expanded quantities of imagery influence us on a daily basis, in contrast to earlier days where the textual prevailed. The increasing producing and reproducing of images continuously compete for our attention. As such, how we perceive images and in what way images are framed or mediate our beliefs, has become of even greater importance than ever before. Especially in art education a critical awareness and approach of images as part of visual culture is of utmost importance. The Bilderatlas operates as a mediation, and offers new Ways of Seeing and knowing. It is mainly known as result of the ground-breaking work of the cultural theorist Aby Warburg, who intended to present an art history without words. His Mnemosyne Bilderatlas shows how the arrangement of images - and the interstices between them, offers new perspectives and ways of seeing. The Atlas as a medium to critically address Visual Culture is also practiced by the German artist Gerhard Richter, and it is in written form used in the Passagen Werk of Walter Benjamin. In order to examine the use of the Bilderatlas as a tool in art education, several experiments with art students have been conducted. These experiments have lead to an exploration of different Pedagogies, which help to offer new perspectives and trajectories of learning. To use the Bilderatlas as a tool to develop criticality towards Visual Culture, I developed and tested a new pedagogy; a Pedagogy of Difference and Repetition, based on the philosophy of Gilles Deleuze. Furthermore, in offering a new pedagogy - based on the rhizomatic work of Gilles Deleuze – the Bilderatlas as a tool to develop criticality has found a firm basis. Keywords—Art Education, Walter Benjamin, Bilderatlas, Gilles Deleuze, Difference and Repetition, Pedagogy, Rhizomes, Visual Culture,Keywords: Art Education, Bilderatlas, Pedagogy, Aby Warburg
Procedia PDF Downloads 1594231 Musical Diversity: The Differences between Public and Private Kindergartens in China
Authors: Kunyu Yan
Abstract:
Early childhood music education plays a significant role in an individual’s growth. Music can help children understand themselves and relate to others, and make connections between family, school, and society. In recent years, with the development of early childhood education in China, an increasing number of kindergartens have been established, and many of them pay more attention to music education. This research has two main aims. One is to discover how and why music is used in both public and private kindergartens. The second aim is to make recommendations for widening the use of music in kindergartens. In order to achieve these aims, the research uses two main methods. Firstly, it considers the historical background and cultural context of early childhood education in China; and secondly, it uses an approach that compares public and private kindergartens. In this research, six kindergartens were chosen from Qingdao city in Shandong Province as case studies, including 3 public kindergartens and 3 private kindergartens. This research was based on using three types of data collection methods: observation, semi-structured interviews with teachers, and questionnaires with parents. Participant and non-participant observational methods were used and included in daily routines at the kindergartens in order to experience the situation of music education first-hand. Interviews were associated with teachers’ views of teaching and learning music, the perceptions of the music context, and their strategies of using music. Lastly, the questionnaire was designed to obtain the views of current music education from the children’s parents in the respective kindergartens. The results are shown with three main themes: (1) distinct characteristics of public kindergartens (e.g., similar equipment, low tuition fee, qualified teachers, etc); (2) distinct characteristics of private kindergartens (e.g., various tuition fees, own teaching system, trained teachers, etc); and (3) differences between public and private kindergartens (e.g., funding, requirements for teachers, parents’ demands, etc). According to the results, we can see that the main purpose of using music in China is to develop the musical ability of children, and teachers focus on musical learning, such as singing in tune and playing instruments. However, as revealed in this research, there are many other uses and functions of music in these educational settings, including music used for non-musical learning (e.g., counting, learning language, etc.) or in supporting social routines.Keywords: differences between private and public school, early childhood education, music education, uses and functions of music
Procedia PDF Downloads 2274230 Integrating Flipped Instruction to Enhance Second Language Acquisition
Authors: Borja Ruiz de Arbulo Alonso
Abstract:
This paper analyzes the impact of flipped instruction in adult learners of Spanish as a second language in a face-to-face course at Boston University. Given the limited amount of contact hours devoted to studying world languages in the American higher education system, implementing strategies to free up classroom time for communicative language practice is key to ensure student success in their learning process. In an effort to improve the way adult learners acquire a second language, this paper examines the role that regular pre-class and web-based exposure to Spanish grammar plays in student performance at the end of the academic term. It outlines different types of web-based pre-class activities and compares this approach to more traditional classroom practice. To do so, this study works for three months with two similar groups of adult learners in an intermediate-level Spanish class. Both groups use the same course program and have the same previous language experience, but one receives an additional set of instructor-made online materials containing a variety of grammar explanations and online activities that need to be reviewed before attending class. Since the online activities cover material and concepts that have not yet been studied in class, students' oral and written production in both groups is measured by means of a writing activity and an audio recording at the end of the three-month period. These assessments will ascertain the effects of exposing the control group to the grammar of the target language prior to each lecture throughout and demonstrate where flipped instruction helps adult learners of Spanish achieve higher performance, but also identify potential problems.Keywords: educational technology, flipped classroom, second language acquisition, student success
Procedia PDF Downloads 1274229 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling
Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed
Abstract:
Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.Keywords: machine learning, pattern recognition, facial pose classification, time series
Procedia PDF Downloads 3544228 Enhancing Mental Health Services Through Strategic Planning: The East Tennessee State University Counseling Center’s 2024-2028 Plan
Authors: R. M. Kilonzo, S. Bedingfield, K. Smith, K. Hudgins Smith, K. Couper, R. Ratley, Z. Taylor, A. Engelman, M. Renne
Abstract:
Introduction: The mental health needs of university students continue to evolve, necessitating a strategic approach to service delivery. The East Tennessee State University (ETSU) Counseling Center developed its inaugural Strategic Plan (2024-2028) to enhance student mental health services. The plan focuses on improving access, quality of care, and service visibility, aligning with the university’s mission to support academic success and student well-being. Aim: This strategic plan aims to establish a comprehensive framework for delivering high-quality, evidence-based mental health services to ETSU students, addressing current challenges, and anticipating future needs. Methods: The development of the strategic plan was a collaborative effort involving the Counseling Center’s leadership, staff, with technical support from Doctor of Public Health-community and behavioral health intern. Multiple workshops, online/offline reviews, and stakeholder consultations were held to ensure a robust and inclusive process. A SWOT analysis and stakeholder mapping were conducted to identify strengths, weaknesses, opportunities, and challenges. Key performance indicators (KPIs) were set to measure service utilization, satisfaction, and outcomes. Results: The plan resulted in four strategic priorities: service application, visibility/accessibility, safety and satisfaction, and training programs. Key objectives include expanding counseling services, improving service access through outreach, reducing stigma, and increasing peer support programs. The plan also focuses on continuous quality improvement through data-driven assessments and research initiatives. Immediate outcomes include expanded group therapy, enhanced staff training, and increased mental health literacy across campus. Conclusion and Recommendation: The strategic plan provides a roadmap for addressing the mental health needs of ETSU students, with a clear focus on accessibility, inclusivity, and evidence-based practices. Implementing the plan will strengthen the Counseling Center’s capacity to meet the diverse needs of the student population. To ensure sustainability, it is recommended that the center continuously assess student needs, foster partnerships with university and external stakeholders, and advocate for increased funding to expand services and staff capacity.Keywords: strategic plan, university counseling center, mental health, students
Procedia PDF Downloads 244227 Rethinking the Languages for Specific Purposes Syllabus in the 21st Century: Topic-Centered or Skills-Centered
Authors: A. Knezović
Abstract:
21st century has transformed the labor market landscape in a way of posing new and different demands on university graduates as well as university lecturers, which means that the knowledge and academic skills students acquire in the course of their studies should be applicable and transferable from the higher education context to their future professional careers. Given the context of the Languages for Specific Purposes (LSP) classroom, the teachers’ objective is not only to teach the language itself, but also to prepare students to use that language as a medium to develop generic skills and competences. These include media and information literacy, critical and creative thinking, problem-solving and analytical skills, effective written and oral communication, as well as collaborative work and social skills, all of which are necessary to make university graduates more competitive in everyday professional environments. On the other hand, due to limitations of time and large numbers of students in classes, the frequently topic-centered syllabus of LSP courses places considerable focus on acquiring the subject matter and specialist vocabulary instead of sufficient development of skills and competences required by students’ prospective employers. This paper intends to explore some of those issues as viewed both by LSP lecturers and by business professionals in their respective surveys. The surveys were conducted among more than 50 LSP lecturers at higher education institutions in Croatia, more than 40 HR professionals and more than 60 university graduates with degrees in economics and/or business working in management positions in mainly large and medium-sized companies in Croatia. Various elements of LSP course content have been taken into consideration in this research, including reading and listening comprehension of specialist texts, acquisition of specialist vocabulary and grammatical structures, as well as presentation and negotiation skills. The ability to hold meetings, conduct business correspondence, write reports, academic texts, case studies and take part in debates were also taken into consideration, as well as informal business communication, business etiquette and core courses delivered in a foreign language. The results of the surveys conducted among LSP lecturers will be analyzed with reference to what extent those elements are included in their courses and how consistently and thoroughly they are evaluated according to their course requirements. Their opinions will be compared to the results of the surveys conducted among professionals from a range of industries in Croatia so as to examine how useful and important they perceive the same elements of the LSP course content in their working environments. Such comparative analysis will thus show to what extent the syllabi of LSP courses meet the demands of the employment market when it comes to the students’ language skills and competences, as well as transferable skills. Finally, the findings will also be compared to the observations based on practical teaching experience and the relevant sources that have been used in this research. In conclusion, the ideas and observations in this paper are merely open-ended questions that do not have conclusive answers, but might prompt LSP lecturers to re-evaluate the content and objectives of their course syllabi.Keywords: languages for specific purposes (LSP), language skills, topic-centred syllabus, transferable skills
Procedia PDF Downloads 3114226 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1614225 Foundation Phase Teachers' Experiences of School Based Support Teams: A Case of Selected Schools in Johannesburg
Authors: Ambeck Celyne Tebid, Harry S. Rampa
Abstract:
The South African Education system recognises the need for all learners including those experiencing learning difficulties, to have access to a single unified system of education. For teachers to be pedagogically responsive to an increasingly diverse learner population without appropriate support has been proven to be unrealistic. As such, this has considerably hampered interest amongst teachers, especially those at the foundation phase to work within an Inclusive Education (IE) and training system. This qualitative study aimed at investigating foundation phase teachers’ experiences of school-based support teams (SBSTs) in two Full-Service (inclusive schools) and one Mainstream public primary school in the Gauteng province of South Africa; with particular emphasis on finding ways to supporting them, since teachers claimed they were not empowered in their initial training to teach learners experiencing learning difficulties. Hence, SBSTs were created at school levels to fill this gap thereby, supporting teaching and learning by identifying and addressing learners’, teachers’ and schools’ needs. With the notion that IE may be failing because of systemic reasons, this study uses Bronfenbrenner’s (1979) ecosystemic as well as Piaget’s (1980) maturational theory to examine the nature of support and experiences amongst teachers taking individual and systemic factors into consideration. Data was collected using in-depth, face-to-face interviews, document analysis and observation with 6 foundation phase teachers drawn from 3 different schools, 3 SBST coordinators, and 3 school principals. Data was analysed using the phenomenological data analysis method. Amongst the findings of the study is that South African full- service and mainstream schools have functional SBSTs which render formal and informal support to the teachers; this support varies in quality depending on the socio-economic status of the relevant community where the schools are situated. This paper, however, argues that what foundation phase teachers settled for as ‘support’ is flawed; as well as how they perceive the SBST and its role is problematic. The paper conclude by recommending that, the SBST should consider other approaches at foundation phase teacher support such as, empowering teachers with continuous practical experiences on how to deal with real classroom scenarios, as well as ensuring that all support, be it on academic or non-academic issues should be provided within a learning community framework where the teacher, family, SBST and where necessary, community organisations should harness their skills towards a common goal.Keywords: foundation phase, full- service schools, inclusive education, learning difficulties, school-based support teams, teacher support
Procedia PDF Downloads 2414224 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1374223 Still Pictures for Learning Foreign Language Sounds
Authors: Kaoru Tomita
Abstract:
This study explores how visual information helps us to learn foreign language pronunciation. Visual assistance and its effect for learning foreign language have been discussed widely. For example, simplified illustrations in textbooks are used for telling learners which part of the articulation organs are used for pronouncing sounds. Vowels are put into a chart that depicts a vowel space. Consonants are put into a table that contains two axes of place and manner of articulation. When comparing a still picture and a moving picture for visualizing learners’ pronunciation, it becomes clear that the former works better than the latter. The visualization of vowels was applied to class activities in which native and non-native speakers’ English was compared and the learners’ feedback was collected: the positions of six vowels did not scatter as much as they were expected to do. Specifically, two vowels were not discriminated and were arranged very close in the vowel space. It was surprising for the author to find that learners liked analyzing their own pronunciation by linking formant ones and twos on a sheet of paper with a pencil. Even a simple method works well if it leads learners to think about their pronunciation analytically.Keywords: feedback, pronunciation, visualization, vowel
Procedia PDF Downloads 2554222 A Cross-Sectional Study on Smartphone Addiction, Sleep Hygiene, and Perceived Stress
Authors: Kriti Singh, Saurabh Tripathi, Pankaj Chaudhary, Abid Ali Ansari, Seema Nigam
Abstract:
Introduction: The introduction of android and iOS has changed our lives dramatically over the past few years. The new generation is more dependent on their mobile phones for carrying out their daily pursuits. Smartphones have revolutionized our lives. The cutdown in rates of mobile network services has been affecting us drastically. A new type of dependence is seen among the people for Smartphones. A cross-sectional study was conducted to determine the state of addiction among the group of medical students, along with its association with sleep hygiene and anxiety. Material and Method: Study included 50 individuals in the age group of 18-35 years. Smartphone Addiction Scale Short Version, Sleep Hygiene Index, and Perceived Stress Scales were used conducting the study. Results: Mean age of 22 years (12%). The majority of subjects were 20-year olds (15 out of 50), the majority were males with few females. Mean Smartphone addiction score 39 (very severe), Mean Sleep Hygiene Index score 26.76 (moderate maladaptive hygiene and Mean Perceived Stress score of 19.92 (moderate stress). Conclusion: In majority students were found to have a very severe Smartphone Addiction with moderate sleep hygiene and a moderate level of perceived stress. The Smartphone was being used was for surfing social media applications.Keywords: addiction perceived stress, sleep hygiene index, smartphone
Procedia PDF Downloads 1424221 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3244220 The Forms of Representation in Architectural Design Teaching: The Cases of Politecnico Di Milano and Faculty of Architecture of the University of Porto
Authors: Rafael Sousa Santos, Clara Pimena Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
The representative component, a determining aspect of the architect's training, has been marked by an exponential and unprecedented development. However, the multiplication of possibilities has also multiplied uncertainties about architectural design teaching, and by extension, about the very principles of architectural education. In this paper, it is intended to present the results of a research developed on the following problem: the relation between the forms of representation and the architectural design teaching-learning processes. The research had as its object the educational model of two schools – the Politecnico di Milano (POLIMI) and the Faculty of Architecture of the University of Porto (FAUP) – and was led by three main objectives: to characterize the educational model followed in both schools focused on the representative component and its role; to interpret the relation between forms of representation and the architectural design teaching-learning processes; to consider their possibilities of valorisation. Methodologically, the research was conducted according to a qualitative embedded multiple-case study design. The object – i.e., the educational model – was approached in both POLIMI and FAUP cases considering its Context and three embedded unities of analysis: the educational Purposes, Principles, and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is assumed; the architectural design classes, expressing how the model is achieved; and the students, expressing how the model is acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal the importance of the representative component in the educational model of both cases, despite the differences in its role. In POLIMI's model, representation is particularly relevant in the teaching of architectural design, while in FAUP’s model, it plays a transversal role – according to an idea of 'general training through hand drawing'. In fact, the difference between models relative to representation can be partially understood by the level of importance that each gives to hand drawing. Regarding the teaching of architectural design, the two cases are distinguished in the relation with the representative component: while in POLIMI the forms of representation serve essentially an instrumental purpose, in FAUP they tend to be considered also for their methodological dimension. It seems that the possibilities for valuing these models reside precisely in the relation between forms of representation and architectural design teaching. It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance of the educational model of POLIMI and FAUP; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the forms of representation and its relation with architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, educational models, forms of representation
Procedia PDF Downloads 1274219 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2204218 Current Global Education Trends: Issues and Challenges of Physical and Health Education Teaching and Learning in Nigerian Schools
Authors: Bichi Muktar Sani
Abstract:
The philosophy of Physical and Health Education is to develop academic and professional competency which will enable individuals earn a living and render unique services to the society and also provide good basis of knowledge and experience that characterize an educated and fully developed person through physical activities. With the increase of sedentary activities such as watching television, playing videogames, increased computer technology, automation and reduction of high school Physical and Health Education schedules, young people are most likely to become overweight, and less fit. Physical Education is a systematic instruction in sports, training, practice, gymnastics, exercises, and hygiene given as part of a school or college program. Physical and Health Education is the study, practice, and appreciation of the art and science of human movement. Physical and Health Education is course in the curricula that utilizes the learning in the cognitive, affective, and psychomotor domains in a lay or movement exploration setting. The paper made some recommendations on the way forward.Keywords: issues, challenges, physical education, school
Procedia PDF Downloads 464217 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 324216 Online Assessment in the Ligh of Resiliance
Authors: Renáta Nagy, Alexandra Csongor, Vilmos Warta
Abstract:
The presentation aims at eliciting insight into the results of ongoing research regarding evolving trends and attitudes towards online assessment of English and other languages. The focus pinpoints online as one of the most trending forms available during the global pandemic. The study was first initiated in 2019 in which its main target was to reveal the intriguing question of students’ and assessors’ attitudes towards online assessment. The research questions the attitudes towards the latest trends, possible online task types, and their advantages and disadvantages through an in-depth experimental process currently undergoing implementation. Material and methods include surveys, needs and wants analysis, and thorough investigations regarding candidates’ and assessors’ attitudes towards online tests in the field of languages. Over 400 respondents from more than 28 countries participated in the survey, which gives us an international and intercultural insight into how students with different cultural and educational background deal with the evolving online world. The results show the pandemic’s impact, which brought the slumbering online world of assessing roaring alive, fully operational, and now bears phenomenal relevance in today’s global education. Undeniably, the results can be used as a perspective in a vast array of contents. The survey hypothesized the generation of the 21st century expect everything readily available online, however, questions whether they are ready for this challenge are lurking in the background.Keywords: assessment, english, intercultural, international, online, testing
Procedia PDF Downloads 814215 Moving beyond Learner Outcomes: Culturally Responsive Recruitment, Training and Workforce Development
Authors: Tanya Greathosue, Adrianna Taylor, Lori Darnel, Eileen Starr, Susie Ryder, Julie Clockston, Dawn Matera Bassett, Jess Retrum
Abstract:
The United States has an identified need to improve the social work mental and behavioral health workforce shortage with a focus on culturally diverse and responsive mental and behavioral health practitioners to adequately serve its rapidly growing multicultural communities. The U.S. is experiencing rapid demographic changes. Ensuring that mental and behavioral health services are effective and accessible for diverse communities is essential for improving overall health outcomes. In response to this need, we developed a training program focused on interdisciplinary collaboration, evidence-based practices, and culturally responsive services. The success of the training program, funded by the Health Resource Service Administration (HRSA) Behavioral Health Workforce Education and Training (BHWET), has provided the foundation for stage two of our programming. In addition to HRSA/BHWET, we are receiving funding from Colorado Access, a state workforce development initiative, and Kaiser Permanente, a healthcare provider network in the United States. We have moved beyond improved learner outcomes to increasing recruitment of historically excluded, disproportionately mistreated learners, mentorship of students to improve retention, and successful, culturally responsive, diverse workforce development. These authors will utilize a pretest-posttest comparison group design and trend analysis to evaluate the success of the training program. Comparison groups will be matched based on age, gender identification, race, income, as well as prior experience in the field, and time in the degree program. This article describes our culturally responsive training program. Our goals are to increase the recruitment and retention of historically excluded, disproportionately mistreated learners. We achieve this by integrating cultural humility and sensitivity training into educational curricula for our scholars who participate in cohort classroom and seminar learning. Additionally, we provide our community partners who serve as internship sites with ongoing continuing education on how to promote and develop inclusive and supportive work environments for our learners. This work will be of value to mental and behavioral health care practitioners who serve historically excluded and mistreated populations. Participants will learn about culturally informed best practices to increase recruitment and retention of culturally diverse learners. Additionally, participants will hear how to create a culturally responsive training program that encourages an inclusive community for their learners through cohort learning, mentoring, community networking, and critical accountability.Keywords: culturally diverse mental health practitioners, recruitment, mentorship, workforce development, underserved clinics, professional development
Procedia PDF Downloads 324214 The Adoption of Technological Innovations in a B2C Context: An Empirical Study on the Higher Education Industry in Egypt
Authors: Maha Mourad, Rania Samir
Abstract:
This paper seeks to explain the adoption of technological innovations in a business to consumer context. Specifically, the use of web based technology (WEBCT/blackboard) in the delivery of educational material and communication with students at universities in Egypt is the focus of this study. The analysis draws on existing research in a B2C context which highlights the importance of internal organization characteristics, perceived attributes of the innovation as well as consumer based factors as the main drivers of adoption. A distinctive B2C model is developed drawing on Roger’s innovation adoption model, as well as theoretical and empirical foundations in previous innovation adoption literature to study the adoption of technological innovations in higher education in Egypt. The model proposes that the adoption decision is dependent on a combination of perceived attributes of the innovation, inter-organization factors and consumer factors. The model is testified drawing on the results of empirical work in the form of a large survey conducted on students in three different universities in Egypt (one public, one private and one international). In addition to the attributes of the innovation, specific organization factors (such as university resources) as well as consumer factors were identified as likely to have an important influence on the adoption of technological innovations in higher education.Keywords: innovation, WEBCT, higher education, adoption, Egypt
Procedia PDF Downloads 5524213 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report
Authors: Hualter Oliveira Barbosa, Raquel Feitosa do Vale Cunha, Erika Muniz dos Santos, Fernanda Belmira Souza, Fabio Sousa, Luis Henrique Pascareli, Franciney de Oliveira Lima, Ana Cláudia Reis da Silva, Christiane Moreira de Almeida
Abstract:
Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. For this reason, several approaches have been proposed to minimize barriers caused by geographic distance. In this paper, we present as we use experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki and; facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.Keywords: mobile product, knowledge transfer, knowledge management process, wiki, GSD
Procedia PDF Downloads 1814212 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1344211 The Development of Digital Commerce in Community Enterprise Products to Promote the Distribution of Samut Songkhram Province
Authors: Natcha Wattanaprapa, Alongkorn Taengtong, Phachaya Chaiwchan
Abstract:
This study investigates and promotes the distribution of community enterprise products of Samut Songkhram province by using e-commerce web technology to help distribute the products. This study also aims to develop the information system to be able to operate on multiple platforms and promote the easy usability on smartphones to increase the efficiency and promote the distribution of community enterprise products of Samut Songkhram province in three areas including Baan Saraphi learning center, the learning center of Bang Noi Floating market as well as Bang Nang Li learning center. The main structure consists of spreading the knowledge regarding the tourist attraction in the area of community enterprise, e-commerce system of community enterprise products, and Chatbot. The researcher developed the system into an application form using the software package to create and manage the content on the internet. Connect management system (CMS) word press was used for managing web pages. Add-on CMS word press was used for creating the system of Chatbot, and the database of PHP My Admin was used as the database management system. The evaluation by the experts and users in 5 aspects, including the system efficiency, the accuracy in the operation of the system, the convenience and ease of use of the system, the design, and the promotion of product distribution in Samut Songkhram province by using questionnaires revealed that the result of evaluation in the promotion of product distribution in Samut Songkhram province was the highest with the mean of 4.20. When evaluating the efficiency of the developed system, it was found that the result of system efficiency was the highest level with a mean of 4.10.Keywords: community enterprise, digital commerce, promotion of product distribution, Samut Songkhram province
Procedia PDF Downloads 153