Search results for: energy storage capacity
6571 Leachate Discharges: Review Treatment Techniques
Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb
Abstract:
During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.Keywords: landfill leachate, landfill pollution, impact, wastewater
Procedia PDF Downloads 956570 The Nonlinear Research on Rotational Stiffness of Cuplock Joint
Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu
Abstract:
As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis
Procedia PDF Downloads 1296569 Changes in Rainfall and Temperature and Its Impact on Crop Production in Moyamba District, Southern Sierra Leone
Authors: Keiwoma Mark Yila, Mathew Lamrana Siaffa Gboku, Mohamed Sahr Lebbie, Lamin Ibrahim Kamara
Abstract:
Rainfall and temperature are the important variables which are often used to trace climate variability and change. A perception study and analysis of climatic data were conducted to assess the changes in rainfall and temperature and their impact on crop production in Moyamba district, Sierra Leone. For the perception study, 400 farmers were randomly selected from farmer-based organizations (FBOs) in 4 chiefdoms, and 30 agricultural extension workers (AWEs) in the Moyamba district were purposely selected as respondents. Descriptive statistics and Kendall’s test of concordance was used to analyze the data collected from the farmers and AEWs. Data for the analysis of variability and trends of rainfall and temperature from 1991 to 2020 were obtained from the Sierra Leone Meteorological Agency and Njala University and grouped into monthly, seasonal and annual time series. Regression analysis was used to determine the statistical values and trend lines for the seasonal and annual time series data. The Mann-Kendall test and Sen’s Slope Estimator were used to analyze the trends' significance and magnitude, respectively. The results of both studies show evidence of climate change in the Moyamba district. A substantial number of farmers and AEWs perceived a decrease in the annual rainfall amount, length of the rainy season, a late start and end of the rainy season, an increase in the temperature during the day and night, and a shortened harmattan period over the last 30 years. Analysis of the meteorological data shows evidence of variability in the seasonal and annual distribution of rainfall and temperature, a decreasing and non-significant trend in the rainy season and annual rainfall, and an increasing and significant trend in seasonal and annual temperature from 1991 to 2020. However, the observed changes in rainfall and temperature by the farmers and AEWs partially agree with the results of the analyzed meteorological data. The majority of the farmers perceived that; adverse weather conditions have negatively affected crop production in the district. Droughts, high temperatures, and irregular rainfall are the three major adverse weather events that farmers perceived to have contributed to a substantial loss in the yields of the major crops cultivated in the district. In response to the negative effects of adverse weather events, a substantial number of farmers take no action due to their lack of knowledge and technical or financial capacity to implement climate-sensitive agricultural (CSA) practices. Even though few farmers are practising some CSA practices in their farms, there is an urgent need to build the capacity of farmers and AEWs to adapt to and mitigate the negative impacts of climate change. The most priority support needed by farmers is the provision of climate-resilient crop varieties, whilst the AEWs need training on CSA practices.Keywords: climate change, crop productivity, farmer’s perception, rainfall, temperature, Sierra Leone
Procedia PDF Downloads 786568 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members
Authors: J. Bartus, J. Odrobinak
Abstract:
The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.Keywords: Ansys, concrete, modeling, steel
Procedia PDF Downloads 1296567 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures
Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi
Abstract:
Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO
Procedia PDF Downloads 2916566 Willingness to Pay for the Preservation of Geothermal Areas in Iceland: The Contingent Valuation Studies of Eldvörp and Hverahlíð
Authors: David Cook, Brynhildur Davidsdottir, Dadi. M. Kristofersson
Abstract:
The approval of development projects with significant environmental impacts implies that the economic costs of the affected environmental resources must be less than the financial benefits, but such irreversible decisions are frequently made without ever attempting to estimate the monetary value of the losses. Due to this knowledge gap in the processes informing decision-making, development projects are commonly approved despite the potential for social welfare to be undermined. Heeding a repeated call by the OECD to commence economic accounting of environmental impacts as part of the cost-benefit analysis process for Icelandic energy projects, this paper sets out the results pertaining to the nation’s first two contingent valuation studies of geothermal areas likely to be developed in the near future. Interval regression using log-transformation was applied to estimate willingness to pay (WTP) for the preservation of the high-temperature Eldvörp and Hverahlíð fields. The estimated mean WTP was 8,333 and 7,122 ISK for Eldvörp and Hverahlíð respectively. Scaled up to the Icelandic population of national taxpayers, this equates to estimated total economic value of 2.10 and 1.77 billion ISK respectively. These results reinforce arguments in favour of accounting for the environmental impacts of Iceland’s future geothermal power projects as a mandatory component of the exploratory and production license application process. Further research is necessary to understand the economic impacts to specific ecosystem services associated with geothermal environments, particularly connected to changes in recreational amenity. In so doing, it would be possible to gain greater comprehension of the various components of total economic value, evolving understanding of why one geothermal area – in this case, Eldvörp – has a higher preservation value than another.Keywords: decision-making, contingent valuation, geothermal energy, preservation
Procedia PDF Downloads 2146565 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization
Procedia PDF Downloads 2626564 Detailed Ichnofacies and Sedimentological Analysis of the Cambrian Succession (Tal Group) of the Nigalidhar Syncline, Lesser Himalaya, India and the Interpretation of Its Palaeoenvironment
Authors: C. A. Sharma, Birendra P. Singh
Abstract:
Ichnofacies analysis is considered the best paleontological tool for interpreting ancient depositional environments. Nineteen (19) ichnogenera (namely: Bergaueria, Catenichnus, Cochlichnus, Cruziana, Diplichnites, Dimorphichnus, Diplocraterion, Gordia, Guanshanichnus, Lockeia, Merostomichnites, Monomorphichnus, Palaeophycus, Phycodes, Planolites, Psammichnites, Rusophycus, Skolithos and Treptichnus) are recocered from the Tal Group (Cambrian) of the Nigalidhar Syncline. The stratigraphic occurrences of these ichnogenera represent alternating proximal Cruziana and Skolithos ichnofacies along the contact of Sankholi and Koti-Dhaman formations of the Tal Group. Five ichnogenera namely Catenichnus, Guanshanichnus, Lockeia, Merostomichnites and Psammichnites are recorded for the first time from the Nigalidhar Syncline. Cruziana ichnofacies is found in the upper part of the Sankholi Formation to the lower part of the Koti Dhaman Formation in the NigaliDhar Syncline. The preservational characters here indicate a subtidal environmental condition with poorly sorted, unconsolidated substrate. Depositional condition ranging from moderate to high energy levels below the fair weather base but above the storm wave base under nearshore to foreshore setting in a wave dominated shallow water environment is also indicated. The proximal Cruziana-ichnofacies is interrupted by the Skolithos ichnofacies in the Tal Group of the Nigalidhar Syncline which indicate fluctuating high energy condition which was unfavorable for the opportunistic organism which were dominant during the proximal Cruziana ichnofacies. The excursion of Skolithos ichnofacies (as a pipe rock in the upper part of Sankholi Formation) into the proximal Cruziana ichnofacies in the Tal Group indicate that increased energy and allied parameters attributed to the high rate of sedimentation near the proximal part of the basin. The level bearing the Skolithos ichnofacies in the Nigalidhar Syncline at the juncture of Sankholi and Koti-Dhaman formations can be correlated to the level marked as unconformity in between the Deo-Ka-Tibba and the Dhaulagiri formations by the conglomeratic horizon in the Mussoorie Syncline, Lesser Himalaya, India. Thus, the Tal Group of the Nigalidhar syncline at this stratigraphic level represent slightly deeper water condition than the Mussoorie Syncline, where in the later the aerial exposure dominated which leads to the deposition of conglomeratic horizon and subsequent formation of unconformity. The overall ichnological and sedimentological dataset allow us to infer that the Cambrian successions of Nigalidhar Syncline were deposited in a wave-dominated proximal part of the basin under the foreshore to close to upper shoreface regimes of the shallow marine setting.Keywords: Cambrian, Ichnofacies, Lesser Himalaya, Nigalidhar, Tal Group
Procedia PDF Downloads 2606563 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material
Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez
Abstract:
One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.Keywords: CFD, FEA, FSI, natural fiber, VAWT
Procedia PDF Downloads 2306562 The Implementation of Word Study Wall in an Online English Word Memorization Class
Authors: Yidan Shao
Abstract:
With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.Keywords: second language acquisition, word morphology, word memorization, the Word Wall
Procedia PDF Downloads 1236561 An Investigation into the Interaction of Concrete Frames and Infilled Masonry Walls with Emphasis on the Connections
Authors: Hamid Fazlollahi, Behzad Rafezy, Hassan Afshin
Abstract:
There masonry infill increases the stiffness of reinforced concrete frames, thus increasing the force of the earthquake also the interaction between the frame and infill, which can have devastating effects on structures. In contrast presence of infill to increase the structural strength and stability. What is seen in the construction and design of structures has largely ignored the effects of infill and regardless infill structure and its positive and negative effects analyzes and designs, that it is not economically justified and the positive effects of positive infill to be increased and almost all of the useful capacity of moment frames used for infill. In this paper, by using ABAQUS software, reinforced concrete frame with masonry infill will be modeled, then add a mechanical rubber element to modify the interaction between the frame and infill and thus reduce the losses caused by the presence of infill explains. Finally, by comparing the analytical curves, benefits of this approach we will study and to present the results of the interaction between the frame and infill masonry needs modification and methods it will provide.Keywords: masonry infill, mechanical rubber, reinforced concrete frame, interaction, ductility
Procedia PDF Downloads 4576560 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability
Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong
Abstract:
The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.Keywords: supply chain, facility location, weber problem, sustainability
Procedia PDF Downloads 1056559 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling
Authors: A. Falsafi, M. Dadkhah, S. Shahidi
Abstract:
The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack
Procedia PDF Downloads 1396558 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity
Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi
Abstract:
Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes
Procedia PDF Downloads 2506557 Working Towards More Sustainable Food Waste: A Circularity Perspective
Authors: Rocío González-Sánchez, Sara Alonso-Muñoz
Abstract:
Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.Keywords: bibliometric analysis, circular economy, food waste management, future research lines
Procedia PDF Downloads 1166556 Fin Efficiency of Helical Fin with Fixed Fin Tip Temperature Boundary Condition
Authors: Richard G. Carranza, Juan Ospina
Abstract:
The fin efficiency for a helical fin with a fixed fin tip (or arbitrary) temperature boundary condition is presented. Firstly, the temperature profile throughout the fin is determined via an energy balance around the fin itself. Secondly, the fin efficiency is formulated by integrating across the entire surface of the helical fin. An analytical expression for the fin efficiency is presented and compared with the literature for accuracy.Keywords: efficiency, fin, heat, helical, transfer
Procedia PDF Downloads 6886555 Antimicrobial Activity of the Cyanobacteria spp. against Fish Pathogens in Aquaculture
Authors: I. Tulay Cagatay
Abstract:
Blue-green microalgae cyanobacteria, which are important photosynthetic organisms of aquatic ecosystems, are the primary sources of many bioactive compounds such as proteins, carbohydrates, lipids, vitamins and enzymes that can be used as antimicrobial and antiviral agents. Some of these organisms are nowadays used directly in the food, cosmetic and pharmaceutical industry, or in aquaculture and biotechnological approaches like biofuel or drug therapy. Finding the effective, environmental friendly chemotropic and antimicrobial agents to control fish pathogens are crucial in a country like Turkey which has a production capacity of about 240 thousand tons of cultured fish and has 2377 production farms and which is the second biggest producer in Europe. In our study, we tested the antimicrobial activity of cyanobacterium spp. against some fish pathogens Aeromonas hydrophila and Yersinia ruckeri that are important pathogens for rainbow trout farms. Agar disk diffusion test method was used for studying antimicrobial activity on pathogens. Both tested microorganisms have shown antimicrobial activity positively as the inhibition zones were 0.45 mm and 0.40 mm respectively.Keywords: fish pathogen, cyanobacteria, antimicrobial activity, trout
Procedia PDF Downloads 1706554 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities
Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav
Abstract:
The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks
Procedia PDF Downloads 286553 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature
Authors: Radovan Cobanovic, Milica Rankov Sicar
Abstract:
Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.Keywords: biodiesel, microbiology, room temperature, stability
Procedia PDF Downloads 2876552 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 1556551 Study of Ageing in the Marine Environment of Bonded Composite Structures by Ultrasonic Guided Waves. Comparison of the Case of a Conventional Carbon-epoxy Composite and a Recyclable Resin-Based Composite
Authors: Hamza Hafidi Alaoui, Damien Leduc, Mounsif Ech Cherif El Kettani
Abstract:
This study is dedicated to the evaluation of the ageing of turbine blades in sea conditions, based on ultrasonic Non Destructive Testing (NDT) methods. This study is being developed within the framework of the European Interreg TIGER project. The Tidal Stream Industry Energiser Project, known as TIGER, is the biggest ever Interreg project driving collaboration and cost reductionthrough tidal turbine installations in the UK and France. The TIGER project will drive the growth of tidal stream energy to become a greater part of the energy mix, with significant benefits for coastal communities. In the bay of Paimpol-Bréhat (Brittany), different samples of composite material and bonded composite/composite structures have been immersed at the same time near a turbine. The studied samples are either conventional carbon-epoxy composite samples or composite samples based on a recyclable resin (called recyclamine). One of the objectives of the study is to compare the ageing of the two types of structure. A sample of each structure is picked up every 3 to 6 months and analyzed using ultrasonic guided waves and bulk waves and compared to reference samples. In order to classify the damage level as a function of time spent under the sea, the measure have been compared to a rheological model based on the Finite Elements Method (FEM). Ageing of the composite material, as well as that of the adhesive, is identified. The aim is to improve the quality of the turbine blade structure in terms of longevity and reduced maintenance needs.Keywords: non-destructive testing, ultrasound, composites, guides waves
Procedia PDF Downloads 2256550 Ethical Decision-Making by Healthcare Professionals during Disasters: Izmir Province Case
Authors: Gulhan Sen
Abstract:
Disasters could result in many deaths and injuries. In these difficult times, accessible resources are limited, demand and supply balance is distorted, and there is a need to make urgent interventions. Disproportionateness between accessible resources and intervention capacity makes triage a necessity in every stage of disaster response. Healthcare professionals, who are in charge of triage, have to evaluate swiftly and make ethical decisions about which patients need priority and urgent intervention given the limited available resources. For such critical times in disaster triage, 'doing the greatest good for the greatest number of casualties' is adopted as a code of practice. But there is no guide for healthcare professionals about ethical decision-making during disasters, and this study is expected to use as a source in the preparation of the guide. This study aimed to examine whether the qualities healthcare professionals in Izmir related to disaster triage were adequate and whether these qualities influence their capacity to make ethical decisions. The researcher used a survey developed for data collection. The survey included two parts. In part one, 14 questions solicited information about socio-demographic characteristics and knowledge levels of the respondents on ethical principles of disaster triage and allocation of scarce resources. Part two included four disaster scenarios adopted from existing literature and respondents were asked to make ethical decisions in triage based on the provided scenarios. The survey was completed by 215 healthcare professional working in Emergency-Medical Stations, National Medical Rescue Teams and Search-Rescue-Health Teams in Izmir. The data was analyzed with SPSS software. Chi-Square Test, Mann-Whitney U Test, Kruskal-Wallis Test and Linear Regression Analysis were utilized. According to results, it was determined that 51.2% of the participants had inadequate knowledge level of ethical principles of disaster triage and allocation of scarce resources. It was also found that participants did not tend to make ethical decisions on four disaster scenarios which included ethical dilemmas. They stayed in ethical dilemmas that perform cardio-pulmonary resuscitation, manage limited resources and make decisions to die. Results also showed that participants who had more experience in disaster triage teams, were more likely to make ethical decisions on disaster triage than those with little or no experience in disaster triage teams(p < 0.01). Moreover, as their knowledge level of ethical principles of disaster triage and allocation of scarce resources increased, their tendency to make ethical decisions also increased(p < 0.001). In conclusion, having inadequate knowledge level of ethical principles and being inexperienced affect their ethical decision-making during disasters. So results of this study suggest that more training on disaster triage should be provided on the areas of the pre-impact phase of disaster. In addition, ethical dimension of disaster triage should be included in the syllabi of the ethics classes in the vocational training for healthcare professionals. Drill, simulations, and board exercises can be used to improve ethical decision making abilities of healthcare professionals. Disaster scenarios where ethical dilemmas are faced should be prepared for such applied training programs.Keywords: disaster triage, medical ethics, ethical principles of disaster triage, ethical decision-making
Procedia PDF Downloads 2506549 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 2596548 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery
Authors: Sreeparna Majee, G. C. Shit
Abstract:
A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia
Procedia PDF Downloads 1446547 Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh
Authors: H. M. Nuralam, Z. Xiao-lan, B. K. Dubey, D. Wen-Chuan
Abstract:
Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW.Keywords: awareness, disposal, Dhaka city, healthcare waste management, waste generation
Procedia PDF Downloads 3286546 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors
Authors: Saeed Vahedikamal, Ian Hepburn
Abstract:
Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID
Procedia PDF Downloads 1006545 Microwave Single Photon Source Using Landau-Zener Transitions
Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri
Abstract:
As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing
Procedia PDF Downloads 1046544 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision
Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason
Abstract:
Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics
Procedia PDF Downloads 2476543 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study
Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier
Abstract:
An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house
Procedia PDF Downloads 4186542 A Framework to Assess the Maturity of Customer Involvement in the Service Design of Product-Service Systems
Authors: Taghreed Abu-Salim
Abstract:
This paper develops and investigates a framework for the assessment of customer involvement in the service design process of result oriented product-service systems in order to improve the service offering in a business to business (B2B) context. The framework comprises five main criteria and fifteen sub-criteria that contribute to customer involvement in a hierarchy using a maturity grid to highlight the strengths and weaknesses for each criterion. To develop the customer involvement framework, an extensive literature review related to service design, result oriented product-service system (PSS) and customer involvement in service design was carried out. Key factors that significantly influence customer involvement from industry and literature were identified to develop an initial framework. This framework was tested in six companies from four different sectors of industry: district cooling, medical equipment, transportation and oil storage. Validation of the framework was carried out using expert opinions and industrial case studies. A major contribution of the developed framework includes a hierarchy of appropriate criteria for assessing customer involvement in the service design process within results oriented PSS; the definition of four maturity levels which are suitable to describe the whole spectrum of customer involvement in the service design process; and finally, The paper concludes by enabling service providers to: take proactive decisions; screen and evaluate new services; improve perceived service quality; and provide barriers against imitation.Keywords: customer involvement, maturity grid, new service development, result oriented product-service system, service design
Procedia PDF Downloads 536