Search results for: zeolite material
6143 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material
Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez
Abstract:
One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.Keywords: CFD, FEA, FSI, natural fiber, VAWT
Procedia PDF Downloads 2266142 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System
Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka
Abstract:
The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting
Procedia PDF Downloads 1786141 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure
Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng
Abstract:
The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control
Procedia PDF Downloads 4476140 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 2546139 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material
Procedia PDF Downloads 3896138 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x
Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze
Abstract:
On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.Keywords: InAs, InP, solid solutions, irradiation
Procedia PDF Downloads 1796137 Utilization of the Compendium on Contextualized Story Word Problems in Mathematics
Authors: Rex C. Apillanes, Ana Rubi L. Sereño, Ellen Joy L. Palangan
Abstract:
The main objective of this action research is to know the effectiveness of the compendium on Contextualized Story Word Problem in Mathematics used as an intervention material to enhance the comprehension and problem-solving skills of Grade 4 pupils. This also addresses the competencies outlined in the curriculum guide while, at the same time, providing instructional material which the pupils can work on and practice solving word problems. The twelve randomly selected grade four pupils of Mantuyom Elementary School have been chosen as respondents for this action research in consideration of their consent and approval. A Pre-Test and a Post-test have been given to the pupils to determine their baseline proficiency level in four fundamental operations. The data has been statistically treated using a T-test to determine their difference. At a mean score of 13.42 and 16.83 for pre and post-tests, respectively, the p-value of 0.000620816 reflects a highly significant difference for the pre-test and post-test. This is lesser than the 0.05 level of significance (p≤0.05). Therefore, it is found that the compendium of contextualized story word problems is an efficient instructional material for Mathematics 4, yet; it is recommended that a Parents’ User Guide shall be developed to assist the parents in the conduct of the Remediation, Reinforcement and Enhancement (RRE).Keywords: action research, compendium, contextualized, story, word problem, research, intervention
Procedia PDF Downloads 986136 Potential of Irish Orientated Strand Board in Bending Active Structures
Authors: Matt Collins, Bernadette O'Regan, Tom Cosgrove
Abstract:
To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.Keywords: bending active gridshells, high end timber structures, low cost material, sustainability
Procedia PDF Downloads 3816135 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell
Authors: Sujit Kumar Guchhait, Subir Paul
Abstract:
One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM
Procedia PDF Downloads 3026134 Representations of Childcare Robots as a Controversial Issue
Authors: Raya A. Jones
Abstract:
This paper interrogates online representations of robot companions for children, including promotional material by manufacturers, media articles and technology blogs. The significance of the study lies in its contribution to understanding attitudes to robots. The prospect of childcare robots is particularly controversial ethically, and is associated with emotive arguments. The sampled material is restricted to relatively recent posts (the past three years) though the analysis identifies both continuous and changing themes across the past decade. The method extrapolates social representations theory towards examining the ways in which information about robotic products is provided for the general public. Implications for social acceptance of robot companions for the home and robot ethics are considered.Keywords: acceptance of robots, childcare robots, ethics, social representations
Procedia PDF Downloads 2526133 Prediction of Deformations of Concrete Structures
Authors: A. Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 3366132 Characteristics Features and Action Mechanism of Some Country Made Pistols
Authors: Ajitesh Pal, Arpan Datta Roy, H. K. Pratihari
Abstract:
The different illegal firearms crudely made by skilled gunsmith from scrap materials are popularly known as country made firearms. Such firearms along with improvised ammunition are clandestinely marketed at the cheaper price without any license to the extremist group, criminal, poachers and firearm lovers. As per National Crime Records Bureau (NCRB), MHA, Govt of India about 80% firearm cases are committed by country made/improvised firearms. The ballistic division of the laboratory has examined a good number of cases. The analysis of firearm cases received for forensic examination revealed that 7.65mm calibre pistols mostly improvised firearm are commonly used in firearm related crime cases. In the present communication, physical parameters and other characteristics features of some 7.65mm calibre pistols have been discussed in detail. The detailed study on country made (CM) firearm will help to prepare a database related to type of material used, origin of the raw material and tools used for inscription. The study also includes to establish the chemistry of propellants & head stamp pattern. The database will be helpful to the firearm examiners, researchers, students pursuing study on forensic science as reference material.Keywords: improvised pistol, stringent gun law, working mechanism, parameters, database
Procedia PDF Downloads 716131 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 3166130 Transverse Vibration of Non-Homogeneous Rectangular Plates of Variable Thickness Using GDQ
Abstract:
The effect of non-homogeneity on the free transverse vibration of thin rectangular plates of bilinearly varying thickness has been analyzed using generalized differential quadrature (GDQ) method. The non-homogeneity of the plate material is assumed to arise due to linear variations in Young’s modulus and density of the plate material with the in-plane coordinates x and y. Numerical results have been computed for fully clamped and fully simply supported boundary conditions. The solution procedure by means of GDQ method has been implemented in a MATLAB code. The effect of various plate parameters has been investigated for the first three modes of vibration. A comparison of results with those available in literature has been presented.Keywords: rectangular, non-homogeneous, bilinear thickness, generalized differential quadrature (GDQ)
Procedia PDF Downloads 3836129 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties
Procedia PDF Downloads 3476128 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature
Authors: J. O. Bodunrin, S. J. Moloi
Abstract:
This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD
Procedia PDF Downloads 1326127 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks
Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova
Abstract:
CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.Keywords: adsorption, CO₂, high pressure, porous materials
Procedia PDF Downloads 1616126 Microbial Evaluation of Geophagic and Cosmetic Clays from Southern and Western Nigeria: Potential Natural Nanomaterials
Authors: Bisi-Johnson, Mary A., Hamzart A. Oyelade, Kehinde A. Adediran, Saheed A. Akinola
Abstract:
Geophagic and cosmetic clays are among potential nano-material which occur naturally and are of various forms. The use of these nano-clays is a common practice in both rural and urban areas mostly due to tradition and medicinal reasons. These naturally occurring materials can be valuable sources of nano-material by serving as nano-composites. The need to ascertain the safety of these materials is the motivation for this research. Physical Characterization based on the hue value and microbiological qualities of the nano-clays were carried out. The Microbial analysis of the clay samples showed considerable contamination with both bacteria and fungi with fungal contaminants taking the lead. This observation may not be unlikely due to the ability of fungi species to survive harsher growth conditions than bacteria. 'Atike pupa' showed no bacterial growth. The clay with the largest bacterial count was Calabash chalk (Igbanke), while that with the highest fungal count was 'Eko grey'. The most commonly isolated bacteria in this study were Clostridium spp. and Corynebacterium spp. while fungi included Aspergillus spp. These results are an indication of the need to subject these clay materials to treatments such as heating before consumption or topical usage thereby ascertaining their safety.Keywords: nano-material, clay, microorganism, quality
Procedia PDF Downloads 3966125 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher
Abstract:
This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange
Procedia PDF Downloads 3516124 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures
Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar
Abstract:
In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization
Procedia PDF Downloads 2076123 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 3086122 Study of the Effect of Sewing on Non Woven Textile Waste at Dry and Composite Scales
Authors: Wafa Baccouch, Adel Ghith, Xavier Legrand, Faten Fayala
Abstract:
Textile waste recycling has become a necessity considering the augmentation of the amount of waste generated each year and the ecological problems that landfilling and burning can cause. Textile waste can be recycled into many different forms according to its composition and its final utilization. Using this waste as reinforcement to composite panels is a new recycling area that is being studied. Compared to virgin fabrics, recycled ones present the disadvantage of having lower structural characteristics, when they are eco-friendly and with low cost. The objective of this work is transforming textile waste into composite material with good characteristic and low price. In this study, we used sewing as a method to improve the characteristics of the recycled textile waste in order to use it as reinforcement to composite material. Textile non-woven waste was afforded by a local textile recycling industry. Performances tests were evaluated using tensile testing machine and based on the testing direction for both reinforcements and composite panels; machine and transverse direction. Tensile tests were conducted on sewed and non sewed fabrics, and then they were used as reinforcements to composite panels via epoxy resin infusion method. Rule of mixtures is used to predict composite characteristics and then compared to experimental ones.Keywords: composite material, epoxy resin, non woven waste, recycling, sewing, textile
Procedia PDF Downloads 5866121 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC
Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin
Abstract:
Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis
Procedia PDF Downloads 4186120 A Review on the Outlook of the Circular Economy in the Automotive Industry
Abstract:
The relationship of the automotive industry with raw material supply is a major challenge and presents obstacles. Automobiles are ones of the most complex products using a large variety of materials. Safety, eco-friendliness and comfort requirements, physical, chemical and economic limitations set the framework in which this industry continuously optimizes the efficient and responsible use of resources. The concept of circular economy covers the issues of waste generation, resource scarcity and economic advantages. However, circularity is already known for the automobile industry – several efforts are done to foster material reuse, product remanufacturing and recycling. The aim of this study is to give an overview on how the producers comply with the growing demands on one hand, and gain efficiency and increase profitability on the other hand from circular economy.Keywords: automotive industry, circular economy, international requirements, natural resources
Procedia PDF Downloads 3266119 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing
Authors: Daniel Phifer, Anna Prokhodtseva
Abstract:
DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell
Procedia PDF Downloads 2076118 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems
Abstract:
We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit
Procedia PDF Downloads 3246117 Transitivity Analysis in Reading Passage of English Text Book for Senior High School
Authors: Elitaria Bestri Agustina Siregar, Boni Fasius Siregar
Abstract:
The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age.Keywords: transitivity, types of processes, reading passages, developmental psycholoy
Procedia PDF Downloads 4146116 The Way of the English Use of Businessmen for the ASEAN Economic Community in Chonburi Province
Authors: Kittivate Boonyopakorn
Abstract:
The purposes of this study were to investigate the method of the English use of the businessmen and to study their behavior of the utilization for the ASEAN economic community. The participants were divided into the three types of the merchants including the construction contractors, the construction material traders, and SME entrepreneurs. Survey questionnaires and interviews were used in this study. The findings showed that in the type of traders, 23 of the participants are construction contractors, 121 are construction material traders, and 206 are SME entrepreneurs. The study of English in language institute is highly 51.4%. The use of Google in translating English into Thai is 41.7%. Learning English themselves is 41.1% respectively. The businessmen study English for readiness for their trade.Keywords: way of rnglish use, businessmen, ASEAN economic community, Chonburi province
Procedia PDF Downloads 2416115 Use of Industrial Wastes for Production of Low-Cost Building Material
Authors: Frank Aneke, Elizabeth Theron
Abstract:
Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment.Keywords: bricks, dolomite, fly ash, industrial wastes
Procedia PDF Downloads 2296114 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods
Authors: W. Swiderski
Abstract:
Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation
Procedia PDF Downloads 259