Search results for: under-utilized crops
226 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System
Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España
Abstract:
Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim
Procedia PDF Downloads 79225 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence
Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi
Abstract:
In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.Keywords: germination, priming, seedling growth, wheat
Procedia PDF Downloads 179224 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 510223 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'
Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino
Abstract:
The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics
Procedia PDF Downloads 316222 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes
Authors: Z. Nourmohammadi, F. Farahani, M. Shaker
Abstract:
Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation
Procedia PDF Downloads 428221 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth
Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid
Abstract:
Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.Keywords: rhizobacteria, chili, phytophthora, root rot
Procedia PDF Downloads 263220 Characterization of Banana Based Farming Systems in the Arumeru District, Arusha- Tanzania
Authors: Siah Koka, Rony Swennen
Abstract:
Arumeru district is located in Arusha region in Upper Pangani basin in Tanzania. Economically it is dominated with agricultural activities. Banana, coffee, maize, beans, tomatoes, and cassava are the most important food and cash crops. This paper characterized the banana-based farming system of Arumeru district, evaluates its sustainability as well as research needs. The household questionnaire was performed on-site and on farm observation. Transect walk also involved to identify different agro- ecological zones. Results show that farm holdings (home gardens) are smaller than a hectare (0.7 ha) and continue to fragment as population continues to grow. Banana cultivation is the backbone of the farming systems present both in the upland and plains. In the upper belt banana found their place in the forest, which form the home garden structure typical to East African highland banana production systems. However, in the plains, cultivation is done in monoculture and depends heavily on irrigation. We found slightly less cultivars present and hypothetically more pest and disease pressure. This was mainly seen for Fusarium oxysporum species, which eradicates susceptible cultivars such as Mchare cultivars rapidly given the method of irrigation. The smaller permanent upland home garden plots provide thus a more suitable environment where banana perform better. It should be noted that findings indicated good performance to occur in the less suitable plains too. Good management is believed to be the most influencing factor, although our survey failed in identifying them. Population pressure is currently pushing the sustainable system in the uplands to its boundaries. Nutrient mining, deforestation and changing rain patterns threat production not only on Mt. Meru but on a global scale.Keywords: Arumeru district, banana-based farming system, Tanzania, Arumeru district
Procedia PDF Downloads 180219 Effect of Organic Fertilization and Intercropping of Potato (Solanum Tuberosum) With Faba Bean (Vicia Faba) on Potato’s Yield
Authors: Laila Nassiri, Aziza Irhza, Jamal Ibijbijen, Fouad Rachidi, Ghizlane Echchgadda
Abstract:
The introduction of agroecological practices in ecosystems can contribute to meeting the challenges posed by the diversion of current agricultural production systems towards efficient production methods that are more respectful of the environment, including a reasoned use of inputs and resources. Intercropping is one of these practices that requires the production of two or more crops on the same plot and during the same growing season. Organic fertilization also can contribute to increase the yield due to the potential availability of nutrients. The objective of this work is to study the effect of intercropping and organic fertilization, which are two important practices of agroecology, on potato yield. Intercropping of potato and faba bean was carried out at the Agroecology and Environment platform (ENA, Meknes). The soil is silty-clay, the climate is warm with an average temperature of 17.1°C, and the annual average rainfall of 511mm. Four treatments were tested: Potato sole crop (T1), potato + organic fertilization (T2), Potato + faba bean (T3), Potato + faba bean + organic fertilization (T4). The results showed that there is a significant effect of the treatment on the evolution of the agronomical characters studied, especially the number of leaves and the yield. The number of stems at t0 was equal to 1 in all treatments; it began to grow after 30 days from the date of sowing with a slight increase in treatments containing organic fertilization (T2-T4), then it stabilized 60 days after sowing. In terms of the mean value of the number of leaves, a significant difference was noted between the treatments, the highest value was recorded in treatment T2. The T2 treatment showed the highest average yield, followed by the control (T1). As for the yield, treatments T2 and T1 recorded the highest number of tubers. In order to evaluate two of the practices of agroecology, this work focuses on the evaluation of the effect of intercropping and organic fertilization on the growth and yield parameters of the potato. The results obtained show that agroecological practices have a significant effect on the measured parameters.Keywords: agroecology, intercropping, organic fertilization, potato yield
Procedia PDF Downloads 87218 The Curse of Oil: Unpacking the Challenges to Food Security in the Nigeria's Niger Delta
Authors: Abosede Omowumi Babatunde
Abstract:
While the Niger Delta region satisfies the global thirst for oil, the inhabitants have not been adequately compensated for the use of their ancestral land. Besides, the ruthless exploitation and destruction of the natural environment upon which the inhabitants of the Niger Delta depend for their livelihood and sustenance by the activities of oil multinationals, pose major threats to food security in the region and by implication, Nigeria in general, Africa, and the world, given the present global emphasis on food security. This paper examines the effect of oil exploitation on household food security, identify key gaps in measures put in place to address the changes to livelihoods and food security and explore what should be done to improve the local people access to sufficient, safe and culturally acceptable food in the Niger Delta. Data is derived through interviews with key informants and Focus Group Discussions (FGDs) conducted with respondents in the local communities in the Niger Delta states of Delta, Bayelsa and Rivers as well as relevant extant studies. The threat to food security is one important aspect of the human security challenges in the Niger Delta which has received limited scholarly attention. In addition, successive Nigerian governments have not meaningfully addressed the negative impacts of oil-induced environmental degradation on traditional livelihoods given the significant linkages between environmental sustainability, livelihood security, and food security. The destructive impact of oil pollution on the farmlands, crops, economic trees, creeks, lakes, and fishing equipment is so devastating that the people can no longer engage in productive farming and fishing. Also important is the limited access to modern agricultural methods for fishing and subsistence farming as fishing and farming are done using mostly crude implements and traditional methods. It is imperative and urgent to take stock of the negative implications of the activities of oil multinationals for environmental and livelihood sustainability, and household food security in the Niger Delta.Keywords: challenges, food security, Nigeria's Niger delta, oil
Procedia PDF Downloads 250217 Biogas Production from Zebra Manure and Winery Waste Co-Digestion
Authors: Wicleffe Musingarimi
Abstract:
Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.Keywords: anaerobic digestion, biogas, co-digestion, methanogens
Procedia PDF Downloads 227216 Problems and Prospects of Agricultural Biotechnology in Nigeria’s Developing Economy
Authors: Samson Abayomi Olasoju, Olufemi Adekunle, Titilope Edun, Johnson Owoseni
Abstract:
Science offers opportunities for revolutionizing human activities, enriched by input from scientific research and technology. Biotechnology is a major force for development in developing countries such as Nigeria. It is found to contribute to solving human problems like water and food insecurity that impede national development and threaten peace wherever it is applied. This review identified the problems of agricultural biotechnology in Nigeria. On the part of rural farmers, there is a lack of adequate knowledge or awareness of biotechnology despite the fact that they constitute the bulk of Nigerian farmers. On part of the government, the problems include: lack of adequate implementation of government policy on bio-safety and genetically modified products, inadequate funding of education as well as research and development of products related to biotechnology. Other problems include: inadequate infrastructures (including laboratory), poor funding and lack of national strategies needed for development and running of agricultural biotechnology. In spite of all the challenges associated with agricultural biotechnology, its prospects still remain great if Nigeria is to meet with the food needs of the country’s ever increasing population. The introduction of genetically engineered products will lead to the high productivity needed for commercialization and food security. Insect, virus and other related diseases resistant crops and livestock are another viable area of contribution of biotechnology to agricultural production. In conclusion, agricultural biotechnology will not only ensure food security, but, in addition, will ensure that the local farmers utilize appropriate technology needed for large production, leading to the prosperity of the farmers and national economic growth, provided government plays its role of adequate funding and good policy implementation.Keywords: biosafety, biotechnology, food security, genetic engineering, genetic modification
Procedia PDF Downloads 174215 Phoenix dactylifera Ecosystem in Morocco: Ecology, Socio Economic Role and Constraints to Its Development
Authors: Mohammed Sghir Taleb
Abstract:
Introduction The date palm (Phoenix dactylifera L.) represents an essential element of the oasis ecosystem for Saharan and pre-Saharan regions of Morocco. It plays an important role, not only due to its economic importance, but also its ecological adaptation to, firstly, to ensure necessary protection for crops against underlying warm and dry sales, and secondly to contribute to the fight against desertification. This is one of the oldest cultivated plant species best adapted to difficult climatic conditions of the Saharan and pre-Saharan regions, because of its ecological requirements and economically most suitable for investing in oasis agriculture. Methodology The methodology is mainly based on a literature review of principal theses and projects for the conservation of flora and vegetation. Results The date palm has multiple uses. Indeed, it produces fruits rich in nutrients, provides a multitude of secondary products and generates needed revenue for the survival of oasis populations. In Morocco, the development and modernization of the date palm sector face, both upstream and downstream of the industry, several major constraints. In addition to climate constraints (prolonged drought), in its environment (lack of water resources), to the incessant invasion of disease Bayoud, Moroccan palm ecosystem suffers from a low level of technical and traditional practices prevail and traditional, from the choice of variety and site preparation up to harvesting and recycling of products. Conclusion The date palm plays an important role in the socioeconomic development of local and national level. However, this ecosystem however, is subject to numerous degradation factors caused by anthropogenic action and climate change. to reverse the trends, several programs have been developed by Morocco for the restoration of degraded areas and the development of the Phoenix dactylifera ecosystem to meet the needs of local populations and the development of the national economy.Keywords: efforts, flora, ecosystem, forest, conservation, Morocco
Procedia PDF Downloads 87214 Evaluation of Living Mulches Effectiveness in Weed Suppression, and Seed Yield of Black cumin (Nigella sativa L.) Under Salt Stress
Authors: Fatemeh Benakashani, Hossein Tavakoli, Elias Soltani
Abstract:
To ensure the sustainability of crop cultivation and rural economies, it is imperative that we focus on cultivating resilient crops capable of withstanding salt stress. However, the effective management of weeds in salt-affected soils remains a significant challenge. This study investigates the impact of living mulches, specifically Berseem clover (Trifolium alexandrinum) and Barley (Hordeum vulgare), on weed control, as well as the quality and yield of Black cumin (Nigella sativa) in salt-affected soil. In our research, we employed a two-fold mowing strategy for the living mulches: once following crop establishment and once before the flowering stage. Notably, the weed-free plots demonstrated Black cumin's seed yield, and oil content (31.1% to 34.3%), consistent with previous studies, highlighting its potential for the reclamation and utilization of salt-affected lands. However, Black cumin exhibited limited competitiveness against prevalent weeds in the field, such as Amaranthus retroflexus, Chenopodium album, and Portulaca oleracea, which significantly diminished both the 1000 grain mass in plots where weeds were present. Interestingly, the introduction of living mulches led to improvements in seed yield and seed oil content when compared to both weed-free and weed-infested plots. Notably, Berseem clover exhibited greater biomass than Barley, indicating its heightened competitiveness against weeds. Nevertheless, it's worth noting that in the long term, Berseem clover also competed with the main crop, thereby limiting overall productivity. Consequently, we recommend relocating the Berseem clover living mulch following the establishment of Black cumin as a strategy for weed management in Black cumin fields situated in salt-affected soils.Keywords: weed management, competition, clover, barley, medicinal plant
Procedia PDF Downloads 65213 Cryptic Diversity: Identifying Two Morphologically Similar Species of Invasive Apple Snails in Peninsular Malaysia
Authors: Suganiya Rama Rao, Yoon-Yen Yow, Thor-Seng Liew, Shyamala Ratnayeke
Abstract:
Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Apart from significant economic costs to wetland crops, very little is known about the snails’ effects on native species, and wetland function through their alteration of macrophyte communities. This study was conducted to establish diagnostic characteristics of Pomacea species in the Malaysian environment using genetic and morphological criteria. Snails were collected from eight localities in northern and central regions of Peninsular Malaysia. The mitochondrial COI gene of 52 adult snails was amplified and sequenced. Maximum likelihood analysis was used to analyse species identity and assess phylogenetic relationships among snails from different geographic locations. Shells of the two species were compared using geometric morphometric analysis and covariance analyses. Shell height accounted for most of the observed variation between P. canaliculata and P. maculata, with the latter possessing a smaller mean ratio of shell height: aperture height (p < 0.0001) and shell height to shell width (give p < 0.0001). Genomic and phylogenetic analysis demonstrated the presence of two monophyletic taxa, P. canaliculata and P. maculata, in Peninsular Malaysia samples. P. maculata co-occurred with P. canaliculata in 5 localities, but samples from 3 localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a genomic approach. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrate much interspecific overlap and intraspecific variability; thus morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and develop effective protocols for their management.Keywords: Pomacea canaliculata, Pomacea maculata, invasive species, phylog enetic analysis, geometric morphometric analysis
Procedia PDF Downloads 263212 GIS Mapping of Sheep Population and Distribution Pattern in the Derived Savannah of Nigeria
Authors: Sosina Adedayo O., Babyemi Olaniyi J.
Abstract:
The location, population, and distribution pattern of sheep are severe challenges to agribusiness investment and policy formulation in the livestock industry. There is a significant disconnect between farmers' needs and the policy framework towards ameliorating the sheep production constraints. Information on the population, production, and distribution pattern of sheep remains very scanty. A multi-stage sampling technique was used to elicit information from 180 purposively selected respondents from the study area comprised of Oluyole, Ona-ara, Akinyele, Egbeda, Ido and Ibarapa East LGA. The Global Positioning Systems (GPS) of the farmers' location (distribution), and average sheep herd size (Total Livestock Unit, TLU) (population) were recorded, taking the longitude and latitude of the locations in question. The recorded GPS data of the study area were transferred into the ARC-GIS. The ARC-GIS software processed the data using the ARC-GIS model 10.0. Sheep production and distribution (TLU) ranged from 4.1 (Oluyole) to 25.0 (Ibarapa East), with Oluyole, Akinyele, Ona-ara and Egbeda having TLU of 5, 7, 8 and 20, respectively. The herd sizes were classified as less than 8 (smallholders), 9-25 (medium), 26-50 (large), and above 50 (commercial). The majority (45%) of farmers were smallholders. The FR CP (%) ranged from 5.81±0.26 (cassava leaf) to 24.91±0.91 (Amaranthus spinosus), NDF (%) ranged from 22.38±4.43 (Amaranthus spinosus) to 67.96 ± 2.58 (Althemanthe dedentata) while ME ranged from 7.88±0.24 (Althemanthe dedentata) to 10.68±0.18 (cassava leaf). The smallholders’ sheep farmers were the majority, evenly distributed across rural areas due to the availability of abundant feed resources (crop residues, tree crops, shrubs, natural pastures, and feed ingredients) coupled with a large expanse of land in the study area. Most feed resources available were below sheep protein requirement level, hence supplementation is necessary for productivity. Bio-informatics can provide relevant information for sheep production for policy framework and intervention strategies.Keywords: sheep enterprise, agribusiness investment, policy, bio-informatics, ecological zone
Procedia PDF Downloads 82211 Smallholder Participation in Organized Retail Markets: Evidence from India
Authors: Kedar Vishnu, Parmod Kumar
Abstract:
India is becoming most favored retail destination in the world. The organized retail has presented many opportunities to farmers to increase income by shifting cropping pattern from food grains to commercial crops. Previous research revealed potential benefits for farmers by supplying fruits and vegetables to organized retail channels. However the supply of fruits and vegetables from small and marginal farmers remain low than expected. The main objective of this paper is to identify the factors determining market participation of smallholder farmers in modern organized retail chains. Attempt is also made to find out factors influencing the choice of participation in particular organized retail collection centers as compared to other organized retail. The paper was based on primary survey of 40 Beans and Tomato farmers who supply to organized retail collection centers from Karnataka, India. Multiple regression technique is used to identify the factors determining quantity sold at collection centers. The regression result, show that area under vegetables, yield, and price from modern collection center and having access to technical help were found significantly affecting quantity sold into modern organized retail channels. On the opposite, increased rejection rates and vegetable prices at APMC were found influencing farmers decision into the reverse side. Empirical result of the multinomial logit model show that Reliance fresh has tendency to prefer large farmers who can supply more quality and better quantity compared with TESCO and More collection centers. The negative sign of area, having access to technical help, transportation cost, and number of bore wells led to higher probability of farmers to participate in Reliance Fresh collection centers as compared with More and TESCO.Keywords: fruits, vegetables, organized retail markets, multinomial logit model
Procedia PDF Downloads 345210 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products
Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George
Abstract:
Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites
Procedia PDF Downloads 281209 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk
Authors: Masbubul Ishtiaque Ahmed
Abstract:
Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity
Procedia PDF Downloads 285208 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana
Authors: Tamekloe Michael Kossivi, Kenichi Matsui
Abstract:
Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation
Procedia PDF Downloads 137207 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression
Authors: Bandana Saikia, Ashok Bhattacharyya
Abstract:
Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one
Procedia PDF Downloads 71206 Regeneration Nature of Rumex Species Root Fragment as Affected by Desiccation
Authors: Khalid Alshallash
Abstract:
Small fragments of the roots of some Rumex species including R. obtusifolius and R. crispus have been found to regenerate readily, contributing to the severity of infestations by these very common, widespread and difficult to control perennial weeds of agricultural crops and grasslands. Their root fragments are usually created during routine agricultural practices. We found that fresh root fragments of both species containing 65-70 % of moisture, progressively lose their moisture content when desiccated under controlled growth room conditions matching summer weather of southeast England, with the greatest reduction occurring in the first 48 hours. Probability of shoot emergence and the time taken for emergence in glasshouse conditions were also reduced significantly by desiccation, with R. obtusifolius least affected up to 48-hour. However, the effects converged after 120 hours. In contrast, R. obtusifolius was significantly slower to emerge after up to 48 hours desiccation, again effects converging after longer periods, R. crispus entirely failed to emerge at 120 hours. The dry weight of emerged shoots was not significantly different between the species, until desiccated for 96 hours when R. obtusifolius was significantly reduced. At 120 hours, R. obtusifolius did not emerge. In outdoor trials, desiccation for 24 or 48 hours had less effect on emergence when planted at the soil surface or up to 10 cm of depth, compared to deeper plantings. In both species, emergence was significantly lower when desiccated fragments were planted at 15 or 20 cm. Time taken for emergence was not significantly different between the species until planted at 15 or 20 cm when R. obtusifolius was slower than R. crispus and reduced further by increasing desiccation. Similar variation in effects of increasing soil depth interacting with increasing desiccation was found in reductions in dry weight, the number of tillers and leaf area, with R obtusifolius generally but not exclusively better able to withstand more extreme trial conditions. Our findings suggest that infestations of these highly troublesome weeds may be partly controlled by appropriate agricultural practices, notably exposing cut fragments to drying environmental conditions followed by deep burial.Keywords: regeneration, root fragment, rumex crispus, rumex obtusifolius
Procedia PDF Downloads 98205 Indigenous Adaptation Strategies for Climate Change: Small Farmers’ Options for Sustainable Crop Farming in South-Western Nigeria
Authors: Emmanuel Olasope Bamigboye, Ismail Oladeji Oladosu
Abstract:
Local people of south-western Nigeria like in other climes, continue to be confronted with the vagaries of changing environments. Through the modification of existing practice and shifting resource base, their strategies for coping with change have enabled them to successfully negotiate the shifts in climate change and the environment. This article analyses indigenous adaptation strategies for climate change with a view to enhancing sustainable crop farming in south –western Nigeria. Multi-stage sampling procedure was used to select 340 respondents from the two major ecological zones (Forest and Derived Savannah) for good geographical spread. The article draws on mixed methods of qualitative research, literature review, field observations, informal interview and multinomial logit regression to capture choice probabilities across the various options of climate change adaptation options among arable crop farmers. The study revealed that most 85.0% of the arable crop farmers were males. It also showed that the use of local climate change adaptation strategies had no relationship with the educational level of the respondents as 77.3% had educational experiences at varying levels. Furthermore, the findings showed that seven local adaptation strategies were commonly utilized by arable crop farmers. Nonetheless, crop diversification, consultation with rainmakers and involvement in non-agricultural ventures were prioritized in the order of 1-3, respectively. Also, multinomial logit analysis result showed that at p ≤ 0.05 level of significance, household size (P<0.08), sex (p<0.06), access to loan(p<0.16), age(p<0.07), educational level (P<0.17) and functional extension contact (P<0.28) were all important in explaining the indigenous climate change adaptation utilized by the arable crops farmers in south-western Nigeria. The study concluded that all the identified local adaptation strategies need to be integrated into the development process for sustainable climate change adaptation.Keywords: crop diversification, climate change, adaptation option, sustainable, small farmers
Procedia PDF Downloads 297204 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria
Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman
Abstract:
Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste
Procedia PDF Downloads 380203 Post Harvest Losses and Food Security in Northeast Nigeria What Are the Key Challenges and Concrete Solutions
Authors: Adebola Adedugbe
Abstract:
The challenge of post-harvest losses poses serious threats for food security in Nigeria and the north-eastern part with the country losing about $9billion annually due to postharvest losses in the sector. Post-harvest loss (PHL) is the quantitative and qualitative loss of food in various post-harvest operations. In Nigeria, post-harvest losses (PHL) have been a major challenge to food security and improved farmer’s income. In 2022, the Nigerian government had said over 30 percent of food produced by Nigerian farmers perish during post-harvest. For many in northeast Nigeria, agriculture is the predominant source of livelihood and income. The persistent communal conflicts, flood, decade-old attacks by boko haram and insurgency in this region have disrupted farming activities drastically, with farmlands becoming insecure and inaccessible as communities are forced to abandon ancestral homes, The impact of climate change is also affecting agricultural and fishing activities, leading to shortage of food supplies, acute hunger and loss of livelihood. This has continued to impact negatively on the region and country’s food production and availability making it loose billions of US dollars annually in income in this sector. The root cause of postharvest losses among others in crops, livestock and fisheries are lack of modern post-harvest equipment, chemical and lack of technologies used for combating losses. The 2019 Global Hunger Index showed Nigeria’s case was progressing from a ‘serious to alarming level’. As part of measures to address the problem of post-harvest losses experienced by farmers, the federal government of Nigeria concessioned 17 silos with 6000 metric tonne storage space to private sector to enable farmers to have access to storage facilities. This paper discusses the causes, effects and solutions in handling post-harvest losses and optimize returns on food security in northeast Nigeria.Keywords: farmers, food security, northeast Nigeria, postharvest loss
Procedia PDF Downloads 72202 Effect of Good Agriculture Management Practices and Constraints on Grape Farming: A Case Study in Mirbachakot, Kalakan and Shakardara Districts Kabul, Afghanistan
Authors: Mohammad Mirwais Yusufi
Abstract:
Skillful management is one of the most important success factors for today’s farms. When a farm is well managed, it can generate funds for its sustainability. Grape is one of the most diffused fruits in the world and one of the most important cash crops with high potential of production in Afghanistan as well. While there are several organizations intervening for improvement of this cash crop, the quality and quantity are still not satisfactory for producers and external markets. The situation has not changed over the years. Therefore, a survey was conducted in 2017 with 60 grape growers, supported by questionnaires in Mirbachakot, Kalakan and Shakardara districts of Kabul province. The purpose was to get an understanding of the current socio-demographic characteristics of farmers, management methods, constraints, farm size, yield and contribution of grape farming to household income. Findings indicate that grape farming was predominant 83.3% male, 16.6% female and small-scale farmers were the main grape producers, 60% < 1 ha of land under grape production. Likewise, 50% had more than > 10 years and 33.3% between 1-5 years’ experience in grape farming. The high level of illiteracy and diseases had significant digit effect on growth, yield and quality of grapes. The results showed that vineyard management operations to protect grapes from mechanical damage are very poor or completely absent. Comparing developed countries, table grape is one of the fruits with the highest input of technology, while in developing countries the cost of labor is low but the purchase of the equipment is very high due to financial situation. Hence the low quality and quantity of grape are influenced by poor management methods, such as non-availability of experts and lack of technical guidance in the study site. Thereby, the study suggested that improved agricultural extension services and managerial skills could contribute to addressing the problems.Keywords: constraints, effect, management, Kabul
Procedia PDF Downloads 112201 Organic Agriculture in Pakistan: Opportunities, Challenges, and Future Directions
Authors: Sher Ali
Abstract:
Organic agriculture has gained significant momentum globally as a sustainable and environmentally friendly farming practice. In Pakistan, amidst growing concerns about food security, environmental degradation, and health issues related to conventional farming methods, the adoption of organic agriculture presents a promising pathway for agricultural development. This abstract aims to provide an overview of the status, opportunities, challenges, and future directions of organic agriculture in Pakistan. It delves into the current state of organic farming practices, including the extent of adoption, key crops cultivated, and the regulatory framework governing organic certification. Furthermore, the abstract discusses the unique opportunities that Pakistan offers for organic agriculture, such as its diverse agro-climatic zones, rich biodiversity, and traditional farming knowledge. It highlights successful initiatives and case studies that showcase the potential of organic farming to improve rural livelihoods, enhance food security, and promote sustainable agricultural practices. However, the abstract also addresses the challenges hindering the widespread adoption of organic agriculture in Pakistan, ranging from limited awareness and technical know-how among farmers to inadequate infrastructure and market linkages. It emphasizes the need for supportive policies, capacity-building programs, and investment in research and extension services to overcome these challenges and promote the growth of the organic agriculture sector. Lastly, the abstract outlines future directions and recommendations for advancing organic agriculture in Pakistan, including strategies for scaling up production, strengthening certification mechanisms, and fostering collaboration among stakeholders. By shedding light on the opportunities, challenges, and potential of organic agriculture in Pakistan, this abstract aims to contribute to the discourse on sustainable farming practices at the upcoming Agro Conference in the USA. It invites participants to engage in dialogue, share experiences, and explore avenues for collaboration toward promoting organic agriculture for a healthier, more resilient food system.Keywords: agriculture, challenges, organic, Pakistan
Procedia PDF Downloads 52200 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone
Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma
Abstract:
Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes
Procedia PDF Downloads 166199 The Optimal Irrigation in the Mitidja Plain
Authors: Gherbi Khadidja
Abstract:
In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.Keywords: optimal irrigation, soil moisture, smart irrigation, water management
Procedia PDF Downloads 109198 Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions
Authors: Jamal A. Radaideh, A. J. Radaideh
Abstract:
Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006.Keywords: climate change effects on water resources, adaptation on climate change, treated wastewater recycling, arid and semi-arid regions, Jordan
Procedia PDF Downloads 111197 The Role of Home Composting in Waste Management Cost Reduction
Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti
Abstract:
Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.Keywords: compost, home compost, reducing waste, waste management
Procedia PDF Downloads 427