Search results for: thermal performance parameter
16378 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System
Authors: J. B. Qin, X. H. Jiang, Y. T. Ge
Abstract:
The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged. To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.Keywords: heat pump water heating system, microbubble formation, dissolved gases in water, effectiveness
Procedia PDF Downloads 26616377 Thermal Analysis of Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat” Ad, Nova Crnja
Authors: Aleksandar Dedić, Duško Salemović, Matilda Lazić, Dragan Halas
Abstract:
The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by "Cer" - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers.Keywords: sunflower seeds, regimes of drying, vertical kiln dryer, thermal analysis
Procedia PDF Downloads 7016376 Determination of Thermal Conductivity of Plaster Tow Material and Kapok Plaster by Numerical Method: Influence of the Heat Exchange Coefficient in Transitional Regime
Authors: Traore Papa Touty
Abstract:
This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching a steady state when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value.Keywords: thermal conductivity, numerical method, heat exchange coefficient, transitional regime
Procedia PDF Downloads 21716375 Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room
Authors: Homin Kim, Hyungjo Byun, Jinyoung Do, Yongil Lee, Hyunho Shin, Seungbae Lee
Abstract:
Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed.Keywords: acoustics, CFD, engine room design, mobile hydraulics
Procedia PDF Downloads 32616374 The Perspective of Smart Thermoregulation in Personal Protective Equipment
Authors: Alireza Saidi
Abstract:
Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain
Procedia PDF Downloads 11016373 Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers
Authors: J. Hroudova, J. Zach, L. Vodova
Abstract:
When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.Keywords: insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin
Procedia PDF Downloads 23516372 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress
Procedia PDF Downloads 30316371 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina
Abstract:
Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity
Procedia PDF Downloads 34416370 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture
Authors: K. Ravi, Sabu Subhash
Abstract:
Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.Keywords: bentonite, deep geological repository, thermal history, undrained shear strength
Procedia PDF Downloads 34516369 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire
Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.
Abstract:
Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection
Procedia PDF Downloads 8516368 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate
Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han
Abstract:
The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties
Procedia PDF Downloads 40416367 Thermal Comfort Investigation Based on Predicted Mean Vote (PMV) Index Using Computation Fluid Dynamic (CFD) Simulation: Case Study of University of Brawijaya, Malang-Indonesia
Authors: Dewi Hardiningtyas Sugiono
Abstract:
Concerning towards the quality of air comfort and safety to pedestrians in the University area should be increased as Indonesia economics booming. Hence, the University management needs guidelines of thermal comfort to innovate a new layout building. The objectives of this study is to investigate and then to evaluate the distribution of thermal comfort which is indicated by predicted mean vote (PMV) index at the University of Brawijaya (UB), Malang. The PMV figures are used to evaluate and to redesign the UB layout. The research is started with study literature and early survey to collect all information of building layout and building shape at the University of Brawijaya. The information is used to create a 3D model in CAD software. The model is simulated by Computational Fluid Dynamic (CFD) software to measure the PMV factors of air temperature, relative humidity and air speed in some locations. Validation is done by comparing between PMV value from observation and PMV value from simulation. The resuls of the research shows the most sensitive of microclimatic factors is air temperature surrounding the UB building. Finally, the research is successfully figure out the UB layout and provides further actions to increase the thermal comfort.Keywords: thermal comfort, heat index (HI), CFD, layout
Procedia PDF Downloads 30516366 Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films
Authors: Vedant Subhash
Abstract:
This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations.Keywords: detection efficiency, neutron detection, semiconductor detectors, thermal neutrons
Procedia PDF Downloads 13216365 Thermal Cracking Approach Investigation to Improve Biodiesel Properties
Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli
Abstract:
Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.Keywords: biodiesel, castor oil, fuel properties, thermal cracking
Procedia PDF Downloads 26016364 Experiencing Daylight in Architectural Spaces: A Case Study of Public Buildings in the Context of Karachi, Pakistan
Authors: Safia Asif, Saadia Bano
Abstract:
In a world with rapidly depleting resources, using artificial lighting during daytime is an act of human ignorance. Imitated light is the major source of energy consumption in public buildings. Despite, the fact that substantial working hours of these buildings usually persist in natural daylight time; there is a trend of isolated, un-fenestrated and a-contextual interiors majorly dependent on active energy sources. On the contrary, if direct and un-controlled sunlight is allowed inside the building, it will create visual and thermal discomfort. Controlled daylighting with appropriate design mechanisms is one of the important aspects of achieving thermal and visual comfort. The natural sunlight can be utilized intelligently with the help of architectural thermal controlling mechanisms to achieve a healthy and productive environment. This paper is an attempt to investigate and analyze the importance of daylighting with reference to energy efficiency and thermal comfort. For this purpose, three public buildings including two educational institutions and one general post office are selected, as case-studies in the context of Karachi, Pakistan. Various parameters of visual and thermal comfort are analyzed which includes orientation, ceiling heights, overall building profile along with daylight controlling mechanisms in terms of penetration, distribution, protection, and control. In the later part of the research, a questionnaire survey is also conducted to evaluate the user experience in terms of adequate daylighting and thermal comfort.Keywords: daylight, public buildings, sustainable architecture, visual and thermal comfort
Procedia PDF Downloads 21016363 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 37116362 Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles
Authors: Robel Legese Meko
Abstract:
Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions.Keywords: coir/jute fiber, sound absorption coefficients, compression molding, impedance tube, thermal insulating properties, SEM analysis
Procedia PDF Downloads 10916361 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating
Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis
Procedia PDF Downloads 34216360 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 7216359 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings
Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya
Abstract:
The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment
Procedia PDF Downloads 28816358 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 36716357 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation
Authors: Fangyuan Shao, Wei Liu, Deli Gao
Abstract:
Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe
Procedia PDF Downloads 20316356 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions
Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani
Abstract:
Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration
Procedia PDF Downloads 34616355 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40716354 Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings
Authors: Naveed Ejaz, Liaqat Ali, Amer Nusair
Abstract:
Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating.Keywords: hot corrosion, thermal barrier coatings, yttria stabilized zirconia, calcium zirconate
Procedia PDF Downloads 40416353 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature
Authors: Sakti Mandal
Abstract:
Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)
Procedia PDF Downloads 19716352 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions
Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus
Abstract:
Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations
Procedia PDF Downloads 39916351 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications
Authors: Bharath Kenchappa, Kunigal Shivakumar
Abstract:
Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.Keywords: aerogel, fly ash, porous material, thermal barrier
Procedia PDF Downloads 11116350 Luminescence and Local Environment: Identification of Thermal History
Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues
Abstract:
Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.Keywords: emission, thermal sensing, transition metal, rare eath element
Procedia PDF Downloads 38416349 Evaluation of Thermal Comfort and Energy Consumption in Classroom
Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa
Abstract:
Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.Keywords: thermal comfort, PMV/PPD, air conditioner, TSV
Procedia PDF Downloads 33