Search results for: surface roughness (SR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6701

Search results for: surface roughness (SR)

6071 Chemical Modification of PVC and Its Surface Analysis by Means of XPS and Contact Angle Measurements

Authors: Ali Akrmi, Mohamed Beji, Ahmed Baklouti, Fatma Djouani, Philippe Lang, Mohamed M. Chehimi

Abstract:

Poly(vinyl chloride) (PVC) is a highly versatile polymer with excellent balance of properties and numerous applications such as water pipes, packaging and polymer materials of importance in the biomedical sector. However, depending on the applications, it is necessary to modify PVC by mixing with a plasticizer; surface modification using plasma, surface grafting or flame treatment; or bulk chemical modification which affects the entire PVC chains at an extent that can be tuned by the polymer chemist. The targeted applications are improvement of chemical resistance, avoiding or limitation of migration of toxic plasticizers, improvement of antibacterial properties, or control of blood compatibility.

Keywords: poly(vinyl chloride), nucleophilic substitution, sulfonylcarbamates, XPS

Procedia PDF Downloads 705
6070 Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran

Authors: Akbar Khodavirdizadeh

Abstract:

Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect.

Keywords: Gougerd landslide, stability analysis, slope angle, groundwater, Khoy

Procedia PDF Downloads 169
6069 Functionalization of the Surface of Porous Titanium Nickel Alloy

Authors: Gulsharat A. Baigonakova, Ekaterina S. Marchenko, Venera R. Luchsheva

Abstract:

The preferred materials for bone grafting are titanium-nickel alloys. They have a porous, permeable structure similar to that of bone tissue, can withstand long-term physiological stress in the body, and retain the scaffolding function for bone tissue ingrowth. Despite the excellent functional properties of these alloys, there is a possibility of post-operative infectious complications that prevent the newly formed bone tissue from filling the spaces created in a timely manner and prolong the rehabilitation period of patients. In order to minimise such consequences, it is necessary to use biocompatible materials capable of simultaneously fulfilling the function of a long-term functioning implant and an osteoreplacement carrier saturated with drugs. Methods to modify the surface by saturation with bioactive substances, in particular macrocyclic compounds, for the controlled release of drugs, biologically active substances, and cells are becoming increasingly important. This work is dedicated to the functionalisation of the surface of porous titanium nickelide by the deposition of macrocyclic compounds in order to provide titanium nickelide with antibacterial activity and accelerated osteogenesis. The paper evaluates the effect of macrocyclic compound deposition methods on the continuity, structure, and cytocompatibility of the surface properties of porous titanium nickelide. Macrocyclic compounds were deposited on the porous surface of titanium nickelide under the influence of various physical effects. Structural research methods have allowed the evaluation of the surface morphology of titanium nickelide and the nature of the distribution of these compounds. The method of surface functionalisation of titanium nickelide influences the size of the deposited bioactive molecules and the nature of their distribution. The surface functionalisation method developed has enabled titanium nickelide to be deposited uniformly on the inner and outer surfaces of the pores, which will subsequently enable the material to be uniformly saturated with various drugs, including antibiotics and inhibitors. The surface-modified porous titanium nickelide showed high biocompatibility and low cytotoxicity in in vitro studies. The research was carried out with financial support from the Russian Science Foundation under Grant No. 22-72-10037.

Keywords: biocompatibility, NiTi, surface, porous structure

Procedia PDF Downloads 83
6068 WT1 Expression in Ovarian Malignant Surface Epithelial Tumors

Authors: Mahmoodreza Tahamtan

Abstract:

Malignant surface epithelial ovarian tumors(SEOT) account for approximately 90% of primary ovarian cancer. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Of the 35 cases of ovarian serous cystadenocarcinoma 30(85.7%)were diffusely positive(3+,4+),4 showed reactivity of < 50% of the tumor cells(1+,2+) and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors.

Keywords: WT1, ovary, malignant, epithelial tumors

Procedia PDF Downloads 102
6067 Multiple Pen and Touch Interaction on Interactive LCDs

Authors: Andreas Kunz, Ali Alavi

Abstract:

In this paper, we present a simple active stylus for interactive IR-based tabletop systems. Such tables offer a set of tags for realizing tangible user interfaces, which can only be applied to objects having a relatively big contacting area with the interactive surface. The stylus has a unique address and thus can be clearly distinguished from other styli, objects or finger touches that might simultaneously occur on the interactive surface.

Keywords: interactive screens, pen, tangibles, user interfaces

Procedia PDF Downloads 406
6066 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles

Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan

Abstract:

We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.

Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques

Procedia PDF Downloads 397
6065 Association of Photosynthetic Pigment with Oceanic Physical Parameters in the North-eastern Bay of Bengal

Authors: Saif Khan Sunny, Md. Masud-ul-alam

Abstract:

This study presents the association of photosynthetic pigment: chlorophyll-a (chl-a) and physical parameters: sea surface temperature (SST), dissolved oxygen (DO), sea surface salinity (SSS), and total dissolved solids (TDS) in the northeastern Bay of Bengal. At 15 sampling stations in the bay near the eastern coast of Teknaf, photosynthetic pigment and environmental variables were measured for surface water where acetone extraction was used for ch-a. Samples of seawater were taken in March 2021, where chlorophyll-a content varies from 0.554 to 9.696 mg/m3 in surface water over the sampling site. Higher concentrations may be attributable to the nutrient supply of hatcheries and the delivery of fluvial input. The observed SST, DO, SSS, and TDS in the north-eastern Bay of Bengal are 26.65 to 28.6 °C, 6.26 to 8.03 mg/l, 29.3 to 33.1 PSU, and 22.4 to 25.3 ppm, respectively. Temperature and chl-a had a positive association (0.18), according to an analysis of the cross-correlation matrix. Again, a negative correlation (0.34) between dissolved oxygen and temperature is significant at p < 0.05. Total dissolved solids and dissolved oxygen have a significant negative correlation (0.70) where p is < 0.001.

Keywords: photosynthetic pigment, nutrient supply, chlorophyll, physical parameters

Procedia PDF Downloads 91
6064 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 589
6063 Investigating the Effect of Adding the Window Layer and the Back Surface Field Layer of InₓGa₍₁₋ₓ₎P Material to GaAs Single Junction Solar Cell

Authors: Ahmad Taghinia, Negar Gholamishaker

Abstract:

GaAs (gallium arsenide) solar cells have gained significant attention for their use in space applications. These solar cells have the potential for efficient energy conversion and are being explored as potential power sources for electronic devices, satellites, and telecommunication equipment. In this study, the aim is to investigate the effect of adding a window layer and a back surface field (BSF) layer made of InₓGa₍₁₋ₓ₎P material to a GaAs single junction solar cell. In this paper, we first obtain the important electrical parameters of a single-junction GaAs solar cell by utilizing a two-dimensional simulator software for virtual investigation of the solar cell; then, we analyze the impact of adding a window layer and a back surface field layer made of InₓGa₍₁₋ₓ₎P on the solar cell. The results show that the incorporation of these layers led to enhancements in Jsc, Voc, FF, and the overall efficiency of the solar cell.

Keywords: back surface field layer, solar cell, GaAs, InₓGa₍₁₋ₓ₎P, window layer

Procedia PDF Downloads 76
6062 Co-Seismic Surface Deformation Induced By 24 September 2019 Mirpur, Pakistan Earthquake Along an Active Blind Fault Estimated Using Sentinel-1 TOPS Interferometry

Authors: Muhammad Ali, Zeeshan Afzal, Giampaolo Ferraioli, Gilda Schirinzi, Muhammad Saleem Mughal, Vito Pascazio

Abstract:

On 24 September 2019, an earthquake with 5.6 Mw and 10 km depth stroke in Mirpur. The Mirpur area was highly affected by this earthquake, with the death of 34 people. This study aims to estimate the surface deformation associated with this earthquake. The interferometric synthetic aperture radar (InSAR) technique is applied to study earthquake induced surface motion. InSAR data using 9 Sentinel-1A SAR images from 11 August 2019 to 22 October 2019 is used to investigate the pre, co-, and post-seismic deformation trends. Time series investigation reveals that there was not such deformation in pre-seismic time period. In the co-seismic time period, strong displacement was observed, and in post-seismic results, small displacement is seen due to aftershocks. Our results show the existence of a previously unpublished blind fault in Mirpur and help to locate the fault line. Previous this fault line was triggered during the 2005 earthquake, and now it’s activated on 24 September 2019. Study area is already facing many problems due to natural hazards where additional surface deformations, particularly because of an earthquake with an activated blind fault, have increased its vulnerability.

Keywords: surface deformation, InSAR, earthquake, sentinel-1, mirpur

Procedia PDF Downloads 128
6061 Rough Oscillatory Singular Integrals on Rⁿ

Authors: H. M. Al-Qassem, L. Cheng, Y. Pan

Abstract:

In this paper we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log(deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Among key ingredients of our methods are an L¹→L² estimate and extrapolation.

Keywords: oscillatory singular integral, rough kernel, singular integral, Orlicz spaces, Block spaces, extrapolation, L^{p} boundedness

Procedia PDF Downloads 357
6060 Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature

Authors: James S. Kwame, E. Yakushina, P. Blackwell

Abstract:

The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects.

Keywords: titanium alloys, hole expansion test, edge formability, non-conventional machining

Procedia PDF Downloads 137
6059 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 398
6058 Removal of Organics Pollutants from Wastewater by Activated Carbon Prepared from Dates Stones of Southern Algeria

Authors: Abasse Kamarchou, Ahmed Abdelhafid Bebba, Ali Douadi

Abstract:

The objective of this work is the preparation of an activated carbon from waste date palm from El Oued region, namely the date stones and its use in the treatment of wastewater in this region. The study of the characteristics of this coal has the following results: specific surface 125.86 m2 / g, pore volume 0.039 cm3 / g, pore diameter of 16.25 microns, surface micropores 92.28 m2 / g, the outer surface 33,57 m2 /g, methylene blue number of 13.6 mg / g, iodine number 735.2 mg /g, the functional groups are the number of 4.10-2 mol / g. The optimum conditions for pH, stirring speed, initial concentration, contact time were determined. For organic pollutants, the best conditions are: pH > 8 and pH < 5, a contact time of 5 minutes and an agitation rate of 200 - 300 rpm.

Keywords: date palm, activated carbon, wastewater, El-Oued

Procedia PDF Downloads 310
6057 Streptavidin-Biotin Attachment on Modified Silicon Nanowires

Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh

Abstract:

Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.

Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS

Procedia PDF Downloads 417
6056 Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone

Authors: Christina Roman, Deepak Koirala, Joseph A. Piccirilli

Abstract:

Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library.

Keywords: antibody fragment, crystallography, RNA, surface entropy reduction

Procedia PDF Downloads 195
6055 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 307
6054 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 223
6053 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 466
6052 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete

Authors: Ejazulhaq Rahimi

Abstract:

The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.

Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain

Procedia PDF Downloads 180
6051 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 448
6050 Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study

Authors: Fatema Akram, Mohammad Golam Rasul, Mohammad Masud Kamal Khan, Md. Sharif Imam Ibne Amir

Abstract:

A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated storm-water modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for sub-catchments were simulated and the runoff from the sub-catchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area.

Keywords: ARI, design storm, IFD, rainfall temporal pattern, routing techniques, surface runoff, XPSTORM

Procedia PDF Downloads 453
6049 Atlantic Sailfish (Istiophorus albicans) Distribution off the East Coast of Florida from 2003 to 2018 in Response to Sea Surface Temperature

Authors: Meredith M. Pratt

Abstract:

The Atlantic sailfish (Istiophorus albicans) ranges from 40°N to 40°S in the Western Atlantic Ocean and has great economic and recreational value for sport fishers. Off the eastern coast of Florida, charter boats often target this species. Stuart, Florida, bills itself as the sailfish capital of the world. Sailfish tag data from The Billfish Foundation and NOAA was used to determine the relationship between sea surface temperature (SST) and the distribution of Atlantic sailfish caught and released over a fifteen-year period (2003 to 2018). Tagging information was collected from local sports fishermen in Florida. Using the time and location of each landed sailfish, a satellite-derived SST value was obtained for each point. The purpose of this study was to determine if sea surface warming was associated with changes in sailfish distribution. On average, sailfish were caught at 26.16 ± 1.70°C (x̄ ± s.d.) over the fifteen-year period. The most sailfish catches occurred at temperatures ranging from 25.2°C to 25.5°C. Over the fifteen-year period, sailfish catches decreased at lower temperatures (~23°C and ~24°C) and at 31°C. At ~25°C and ~30°C there was no change in catch numbers of sailfish. From 26°C to 29°C, there was an increase in the number of sailfish. Based on these results, increasing ocean temperatures will have an impact on the distribution and habitat utilization of sailfish. Warming sea surface temperatures create a need for more policy and regulation to protect the Atlantic sailfish and related highly migratory billfish species.

Keywords: atlantic sailfish, Billfish, istiophorus albicans, sea surface temperature

Procedia PDF Downloads 143
6048 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization

Authors: Zawawi Daud

Abstract:

Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.

Keywords: fiber, oil palm leaf, corn stalk, green technology

Procedia PDF Downloads 490
6047 Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell

Authors: Abderrahmane Hemmani, Hamid Khachab, Dennai Benmoussa, Hassane Benslimane, Abderrachid Helmaoui

Abstract:

Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping.

Keywords: back surface field, GaAs, solar cell, technological parameters

Procedia PDF Downloads 433
6046 Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants

Authors: Xiuxia Sun, Yan Jin, Zilong Liu, Shiming Wei

Abstract:

As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals.

Keywords: illite, surfactant, hydration, wettability, adsorption

Procedia PDF Downloads 42
6045 Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags

Authors: Kewei Fan, Sihong Liu, Yi Pik Cheng

Abstract:

This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface.

Keywords: geosynthetics, retaining wall, soil bag, failure mode, interface, shear strength

Procedia PDF Downloads 131
6044 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids

Procedia PDF Downloads 167
6043 Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator

Authors: Nikhil Jain, Bin Yu

Abstract:

We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown.

Keywords: graphene, field-effect transistors, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 427
6042 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation

Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga

Abstract:

A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.

Keywords: membrane distillation, modification, energy efficiency, desalination

Procedia PDF Downloads 254