Search results for: subsection identification
2326 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari
Authors: Shashank Tiwari
Abstract:
The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.Keywords: capsule, drug delivery, dosages, solid, tablet
Procedia PDF Downloads 4392325 Scar Removal Stretegy for Fingerprint Using Diffusion
Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong
Abstract:
Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion
Procedia PDF Downloads 5172324 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1092323 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 1132322 Anti-Corruption Strategies for Private Sector Development: Case Study for the Brazilian Automotive Industry
Authors: Rogerio Vieira Dos Reis
Abstract:
Countries like Brazil that despite fighting hard against corruption are not improving their corruption perception, especially due to systemic political corruption, should review their corruption prevention strategies. This thesis brings a case study based on an alternative way of preventing corruption: addressing the corruption drivers in public policies that lead to poor economic performance. After discussing the Brazilian industrial policies adopted recently, especially the measures towards the automotive sector, two corruption issues in this sector are analyzed: facilitating payment for fiscal benefits and buying the extension of fiscal benefits. In-depth interviews conducted with a policymaker and an executive of the automobile sector provide insights for identifying three main corruption drivers: excessive and unnecessary bureaucracy, a complex tax system and the existence of a closed market without setting performance requirements to be achieved by the benefited firms. Both the identification of the drivers of successful industrial policies and the proposal of anti-corruption strategies to ensure developmental outcomes are based on the economic perspective of industrial policy advocated by developmental authors and on the successful South Korean economic development experience. Structural anti-corruption measures include tax reform, the regulation of lobbying and legislation to allow corporate political contribution. Besides improving policymakers’ technical capabilities, measures at the ministry level include redesigning the automotive regimes as long-term policies focused on national investment with simple and clear rules and making fiscal benefits conditional upon performance targets focused on suppliers. This case study is of broader interest because it recommends the importance of adapting performance audits conducted by anti-corruption agencies, to focus not only on the delivery of public services, but also on the identification of potentially highly damaging corruption drivers in public policies that grant fiscal benefits to achieve developmental outcomes.Keywords: Brazilian automotive sector, corruption, economic development, industrial policy, Inovar-Auto
Procedia PDF Downloads 2132321 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population
Authors: Altayeb Abdalla Ahmed
Abstract:
Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.Keywords: anthropometry, correlation, limb, Sudanese
Procedia PDF Downloads 2952320 Towards Conservation and Recovery of Species at Risk in Ontario: Progress on Recovery Planning and Implementation and an Overview of Key Research Needs
Authors: Rachel deCatanzaro, Madeline Austen, Ken Tuininga, Kathy St. Laurent, Christina Rohe
Abstract:
In Canada, the federal Species at Risk Act (SARA) provides protection for wildlife species at risk and a national legislative framework for the conservation or recovery of species that are listed as endangered, threatened, or special concern under Schedule 1 of SARA. Key aspects of the federal species at risk program include the development of recovery documents (recovery strategies, action plans, and management plans) outlining threats, objectives, and broad strategies or measures for conservation or recovery of the species; the identification and protection of critical habitat for threatened and endangered species; and working with groups and organizations to implement on-the-ground recovery actions. Environment Canada’s progress on the development of recovery documents and on the identification and protection of critical habitat in Ontario will be presented, along with successes and challenges associated with on-the ground implementation of recovery actions. In Ontario, Environment Canada is currently involved in several recovery and monitoring programs for at-risk bird species such as the Loggerhead Shrike, Piping Plover, Golden-winged Warbler and Cerulean Warbler and has provided funding for a wide variety of recovery actions targeting priority species at risk and geographic areas each year through stewardship programs including the Habitat Stewardship Program, Aboriginal Fund for Species at Risk, and the Interdepartmental Recovery Fund. Key research needs relevant to the recovery of species at risk have been identified, and include: surveys and monitoring of population sizes and threats, population viability analyses, and addressing knowledge gaps identified for individual species (e.g., species biology and habitat needs). The engagement of all levels of government, the local and international conservation communities, and the scientific research community plays an important role in the conservation and recovery of species at risk in Ontario– through surveying and monitoring, filling knowledge gaps, conducting public outreach, and restoring, protecting, or managing habitat – and will be critical to the continued success of the federal species at risk program.Keywords: conservation biology, habitat protection, species at risk, wildlife recovery
Procedia PDF Downloads 4532319 Comparing the Apparent Error Rate of Gender Specifying from Human Skeletal Remains by Using Classification and Cluster Methods
Authors: Jularat Chumnaul
Abstract:
In forensic science, corpses from various homicides are different; there are both complete and incomplete, depending on causes of death or forms of homicide. For example, some corpses are cut into pieces, some are camouflaged by dumping into the river, some are buried, some are burned to destroy the evidence, and others. If the corpses are incomplete, it can lead to the difficulty of personally identifying because some tissues and bones are destroyed. To specify gender of the corpses from skeletal remains, the most precise method is DNA identification. However, this method is costly and takes longer so that other identification techniques are used instead. The first technique that is widely used is considering the features of bones. In general, an evidence from the corpses such as some pieces of bones, especially the skull and pelvis can be used to identify their gender. To use this technique, forensic scientists are required observation skills in order to classify the difference between male and female bones. Although this technique is uncomplicated, saving time and cost, and the forensic scientists can fairly accurately determine gender by using this technique (apparently an accuracy rate of 90% or more), the crucial disadvantage is there are only some positions of skeleton that can be used to specify gender such as supraorbital ridge, nuchal crest, temporal lobe, mandible, and chin. Therefore, the skeletal remains that will be used have to be complete. The other technique that is widely used for gender specifying in forensic science and archeology is skeletal measurements. The advantage of this method is it can be used in several positions in one piece of bones, and it can be used even if the bones are not complete. In this study, the classification and cluster analysis are applied to this technique, including the Kth Nearest Neighbor Classification, Classification Tree, Ward Linkage Cluster, K-mean Cluster, and Two Step Cluster. The data contains 507 particular individuals and 9 skeletal measurements (diameter measurements), and the performance of five methods are investigated by considering the apparent error rate (APER). The results from this study indicate that the Two Step Cluster and Kth Nearest Neighbor method seem to be suitable to specify gender from human skeletal remains because both yield small apparent error rate of 0.20% and 4.14%, respectively. On the other hand, the Classification Tree, Ward Linkage Cluster, and K-mean Cluster method are not appropriate since they yield large apparent error rate of 10.65%, 10.65%, and 16.37%, respectively. However, there are other ways to evaluate the performance of classification such as an estimate of the error rate using the holdout procedure or misclassification costs, and the difference methods can make the different conclusions.Keywords: skeletal measurements, classification, cluster, apparent error rate
Procedia PDF Downloads 2522318 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 4332317 Identification and Antibiotic Resistance Rates of Acinetobacter baumannii Strains Isolated from the Respiratory Tract Samples, Obtained from the Different Intensive Care Units
Authors: Recep Kesli, Gulşah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Acinetobacter baumannii (A. baumannii) can cause health-care associated infections, such as bacteremia, urinary tract and wound infections, endocarditis, meningitis, and pneumonia, particularly in intensive care unit patients. In this study, we aimed to evaluate A. baumannii production in sputum and bronchoalveolar lavage and susceptibilities for antibiotics in a 24 months period. Methods: Between October 2013 and September 2015, Acinetobacter baumannii isolated from respiratory tract speciments were evaluated retrospectively. The strains were isolated from the different intensive care units patients. A. baumannii strains were identified by both the conventional methods and aoutomated identification system -VITEK 2 (bio-Merieux, Marcy l’etoile, France). Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria. Results: All the ninety isolates included in the study were from respiratory tract specimens. While of all the isolated 90 Acinetobacter baumannii strains were found to be resistant (100%), against ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam, resistance rates against other tested antibiotics found as follows; meropenem 77, 86%, imipenem 75, 83%, trimethoprim-sulfamethoxazole (TMP-STX) 69, 76,6%, gentamicin 51, 56,6% and amikacin 48, 53,3%. Colistin was found as the most effective antibiotic against Acinetobacter baumannii, and there were not found any resistant (0%) strain against colistin. Conclusion: This study demonstrated that the no resistance was found in Acinetobacter baumannii against to colistin. High rates of resistance to carbapenems (imipenem and meropenem) and other tested antibiotics (ceftiaxone, ceftazidime, ciprofloxacine, piperacilline-tazobactam, TMP-STX gentamicin and amikacin) also have remarkable resistance rates. There was a significant relationship between demographic features of patients such as age, undergoing mechanical ventilation, length of hospital stay with resistance rates. High resistance rates against antibiotics require implementation of the infection control program and rational use of antibiotics. In the present study, while there were not found colistin resistance, panresistance were found against to ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam.Keywords: acinetobacter baumannii, antibiotic resistance, multi drug resistance, intensive care unit
Procedia PDF Downloads 2822316 Nontuberculous Mycobacterium Infection – Still An Important Disease Among People With Late HIV Diagnosis
Authors: Jakub Młoźniak, Adam Szymański, Gabriela Stondzik, Dagny Krankowska, Tomasz Mikuła
Abstract:
Nontuberculous mycobacteria (NTM) are bacterial species that cause diversely manifesting diseases mainly in immunocompromised patients. In people with HIV, NTM infection is an AIDS-defining disease and usually appears when the lymphocyte T CD4 count is below 50 cells/μl. The usage of antiretroviral therapy has decreased the prevalence of NTM among people with HIV, but the disease can still be observed especially among patients with late HIV diagnosis. Common presence in environment, human colonization, clinical similarity with tuberculosis and slow growth on culture makes NTM especially hard to diagnose. The study aimed to analyze the epidemiology and clinical course of NTM among patients with HIV. This study included patients with NTM and HIV admitted to our department between 2017 and 2023. Medical records of patients were analyzed and data on age, sex, median time from HIV diagnosis to identification of NTM infection, median CD4 count at NTM diagnosis, methods of determining NTM infection, type of species of mycobacteria identified, clinical symptoms and treatment course were gathered. Twenty-four patients (20 men, 4 women) with identified NTM were included in this study. Among them, 20 were HIV late presenters. The patients' median age was 40. The main symptoms which patients presented were fever, weight loss and cough. Pulmonary disease confirmed with positive cultures from sputum/bronchoalveolar lavage was present in 18 patients. M. avium was the most common species identified. M. marinum caused disseminated skin lesions in 1 patient. Out of all, 5 people were not treated for NTM caused by lack of symptoms and suspicion of colonization with mycobacterium. Concomitant tuberculosis was present in 6 patients. The median diagnostic time from HIV to NTM infections was 3.5 months. The median CD4 count at NTM identification was 69.5 cells/μl. Median NTM treatment time was 16 months but 7 patients haven’t finished their treatment yet. The most commonly used medications were ethambutol and clarithromycin. Among analyzed patients, 4 of them have died. NTM infections are still an important disease among patients who are HIV late presenters. This disease should be taken into consideration during the differential diagnosis of fever, weight loss and cough in people with HIV with lymphocyte T CD4 count <100 cells/μl. Presence of tuberculosis does not exclude nontuberculous mycobacterium coinfection.Keywords: mycobacteriosis, HIV, late presenter, epidemiology
Procedia PDF Downloads 462315 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)
Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira
Abstract:
Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina
Procedia PDF Downloads 2132314 Current Status of Inclusive Education for Students with Disabilities in Punjab, Pakistan
Authors: Muhammad Shahid Shah, Akram Maqbool, Samina Ashraf
Abstract:
Since start of this century, world has adopted inclusion as a trend in special education. To meet the challenges of inclusion response, the Punjab government has developed a progressive policy to implement inclusive education. The objectives of this research were to analyze the administration and implementation process by consideration on the management, student’s admission process, screening and assessment, adaptations in curriculum and instruction along with an evaluation, government and nonprofit organizations support. The sample consisted of 50 schools both public and private with a total of 3000 students, 9 percent of which (270) were students with disabilities. Among all the students with disabilities, 63 percent (170) were male and 37 percent (100) were female. The concluded remarks regarding management revealed that a large number of inclusive schools was lacking in terms of developing a certain model for inclusion, including the managerial breakup of staff, the involvement of stakeholders, and conducted frequent meetings. Many of schools are not able to restructure their school organizations due to lack of financial resources, consultations, and backup. As for as student’s admission/identification/assessment was concerned, only 12 percent schools applied a selection process regarding student admission, half of which used different procedures for disable candidates. Approximately 5 percent of inclusive schools had modified their curriculum, including a variety of standards. In terms of instruction, 25 percent of inclusive schools reported that they modified their instructional process. Only a few schools, however, provided special equipment for students with visual impairment, physical impairment, speech and hearing problems, students with mild intellectual disabilities, and autism. In a student evaluation, more than 45 percent reported that test items, administration, time allocations, and students’ reports were modified. For the primary board examination conducted by the Education Department of Government of Punjab, this number decreased dramatically. Finally, government and nonprofit organizations support in the forms of funding, coaching, and facilities were mostly provided by provincial governments and by Ghazali Education Trust.Keywords: inclusion, identification, assessment, funding, facilities, evaluation
Procedia PDF Downloads 1392313 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 512312 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1162311 Characterizing Nasal Microbiota in COVID-19 Patients: Insights from Nanopore Technology and Comparative Analysis
Authors: David Pinzauti, Simon De Jaegher, Maria D'Aguano, Manuele Biazzo
Abstract:
The COVID-19 pandemic has left an indelible mark on global health, leading to a pressing need for understanding the intricate interactions between the virus and the human microbiome. This study focuses on characterizing the nasal microbiota of patients affected by COVID-19, with a specific emphasis on the comparison with unaffected individuals, to shed light on the crucial role of the microbiome in the development of this viral disease. To achieve this objective, Nanopore technology was employed to analyze the bacterial 16s rRNA full-length gene present in nasal swabs collected in Malta between January 2021 and August 2022. A comprehensive dataset consisting of 268 samples (126 SARS-negative samples and 142 SARS-positive samples) was subjected to a comparative analysis using an in-house, custom pipeline. The findings from this study revealed that individuals affected by COVID-19 possess a nasal microbiota that is significantly less diverse, as evidenced by lower α diversity, and is characterized by distinct microbial communities compared to unaffected individuals. The beta diversity analyses were carried out at different taxonomic resolutions. At the phylum level, Bacteroidota was found to be more prevalent in SARS-negative samples, suggesting a potential decrease during the course of viral infection. At the species level, the identification of several specific biomarkers further underscores the critical role of the nasal microbiota in COVID-19 pathogenesis. Notably, species such as Finegoldia magna, Moraxella catarrhalis, and others exhibited relative abundance in SARS-positive samples, potentially serving as significant indicators of the disease. This study presents valuable insights into the relationship between COVID-19 and the nasal microbiota. The identification of distinct microbial communities and potential biomarkers associated with the disease offers promising avenues for further research and therapeutic interventions aimed at enhancing public health outcomes in the context of COVID-19.Keywords: COVID-19, nasal microbiota, nanopore technology, 16s rRNA gene, biomarkers
Procedia PDF Downloads 712310 Identification of Bioactive Substances of Opuntia ficus-indica By-Products
Authors: N. Chougui, R. Larbat
Abstract:
The first economic importance of Opuntia ficus-indica relies on the production of edible fruits. This food transformation generates a large amount of by-products (seeds and peels) in addition to cladodes produced by the plant. Several studies showed the richness of these products with bioactive substances like phenolics that have potential applications. Indeed, phenolics have been associated with protection against oxidation and several biological activities responsible of different pathologies. Consequently, there has been a growing interest in identifying natural antioxidants from plants. This study falls within the framework of the industrial exploitation of by-products of the plant. The study aims to investigate the metabolic profile of three by-products (cladodes, peel seeds) regarding total phenolic content by liquid chromatography coupled to mass spectrometry approach (LC-MSn). The byproducts were first washed, crushed and stored at negative temperature. The total phenolic compounds were then extracted by aqueous-ethanolic solvent in order to be quantified and characterized by LC-MS. According to the results obtained, the peel extract was the richest in phenolic compounds (1512.58 mg GAE/100 g DM) followed by the cladode extract (629.23 GAE/100 g DM) and finally by the seed extract (88.82 GAE/100 g DM) which is mainly used for its oil. The LC-MS analysis revealed diversity in phenolics in the three extracts and allowed the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The highest complexity was observed in the seed phenolic composition; more than twenty compounds were detected that belong to acids esters among which three feruloyl sucrose isomers. Sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids were identified in the peel extract, whereas, only nine compounds were found in the cladode extract. It is interesting to highlight that the phenolic composition of the cladode extract was closer to that of the peel exact. However, from a quantitative viewpoint, the peel extract presented the highest amounts. Piscidic and eucomic acids were the two most concentrated molecules, corresponding to 271.3 and 121.6 mg GAE/ 100g DM respectively. The identified compounds were known to have high antioxidant and antiradical potential with the ability to inhibit lipid peroxidation and to exhibit a wide range of biological and therapeutic properties. The findings highlight the importance of using the Opuntia ficus-indica by-products.Keywords: characterization, LC-MSn analysis, Opuntia ficus-indica, phenolics
Procedia PDF Downloads 2312309 Incorporation of Safety into Design by Safety Cube
Authors: Mohammad Rajabalinejad
Abstract:
Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery.Keywords: safety, safety cube, product, system, machinery, design
Procedia PDF Downloads 2472308 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration
Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang
Abstract:
To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.Keywords: medical decision, medical ontologies, ontologies integration, linked data, knowledge engineering, e-health system
Procedia PDF Downloads 2002307 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis
Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu
Abstract:
Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter
Procedia PDF Downloads 1692306 Isolation and Identification of Salmonella spp and Salmonella enteritidis, from Distributed Chicken Samples in the Tehran Province using Culture and PCR Techniques
Authors: Seyedeh Banafsheh Bagheri Marzouni, Sona Rostampour Yasouri
Abstract:
Salmonella is one of the most important common pathogens between humans and animals worldwide. Globally, the prevalence of the disease in humans is due to the consumption of food contaminated with animal-derived Salmonella. These foods include eggs, red meat, chicken, and milk. Contamination of chicken and its products with Salmonella may occur at any stage of the chicken processing chain. Salmonella infection is usually not fatal. However, its occurrence is considered dangerous in some individuals, such as infants, children, the elderly, pregnant women, or individuals with weakened immune systems. If Salmonella infection enters the bloodstream, the possibility of contamination of tissues throughout the body will arise. Therefore, determining the potential risk of Salmonella at various stages is essential from the perspective of consumers and public health. The aim of this study is to isolate and identify Salmonella from chicken samples distributed in the Tehran market using the Gold standard culture method and PCR techniques based on specific genes, invA and ent. During the years 2022-2023, sampling was performed using swabs from the liver and intestinal contents of distributed chickens in the Tehran province, with a total of 120 samples taken under aseptic conditions. The samples were initially enriched in buffered peptone water (BPW) for pre-enrichment overnight. Then, the samples were incubated in selective enrichment media, including TT broth and RVS medium, at temperatures of 37°C and 42°C, respectively, for 18 to 24 hours. Organisms that grew in the liquid medium and produced turbidity were transferred to selective media (XLD and BGA) and incubated overnight at 37°C for isolation. Suspicious Salmonella colonies were selected for DNA extraction, and PCR technique was performed using specific primers that targeted the invA and ent genes in Salmonella. The results indicated that 94 samples were Salmonella using the PCR technique. Of these, 71 samples were positive based on the invA gene, and 23 samples were positive based on the ent gene. Although the culture technique is the Gold standard, PCR is a faster and more accurate method. Rapid detection through PCR can enable the identification of Salmonella contamination in food items and the implementation of necessary measures for disease control and prevention.Keywords: culture, PCR, salmonella spp, salmonella enteritidis
Procedia PDF Downloads 742305 Analyzing How Working From Home Can Lead to Higher Job Satisfaction for Employees Who Have Care Responsibilities Using Structural Equation Modeling
Authors: Christian Louis Kühner, Florian Pfeffel, Valentin Nickolai
Abstract:
Taking care of children, dependents, or pets can be a difficult and time-consuming task. Especially for part- and full-time employees, it can feel exhausting and overwhelming to meet these obligations besides working a job. Thus, working mostly at home and not having to drive to the company can save valuable time and stress. This study aims to show the influence that the working model has on the job satisfaction of employees with care responsibilities in comparison to employees who do not have such obligations. Using structural equation modeling (SEM), the three work models, “work from home”, “working remotely”, and a hybrid model, have been analyzed based on 13 influencing constructs on job satisfaction. These 13 factors have been further summarized into three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, an online survey was conducted with n = 684 employees from the service sector. Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. In addition, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that among the employees with care responsibilities, the higher the proportion of working from home in comparison to working from the office, the more satisfied the employees are with their job. Since the work models that meet the requirements of comprehensive care led to higher job satisfaction amongst employees with such obligations, adapting as a company to such private obligations by employees can be crucial to sustained success. Conversely, the satisfaction level of the working model where employees work at the office is higher for workers without caregiving responsibilities.Keywords: care responsibilities, home office, job satisfaction, structural equation modeling
Procedia PDF Downloads 842304 A Risk-Based Approach to Construction Management
Authors: Chloe E. Edwards, Yasaman Shahtaheri
Abstract:
Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering
Procedia PDF Downloads 1082303 Differentiated Instruction for All Learners: Strategies for Full Inclusion
Authors: Susan Dodd
Abstract:
This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.Keywords: gifted, learning disability, special needs, twice exceptional
Procedia PDF Downloads 1812302 Parameter Estimation in Dynamical Systems Based on Latent Variables
Authors: Arcady Ponosov
Abstract:
A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.Keywords: generalized law of mass action, metamodels, principal components, synergetic systems
Procedia PDF Downloads 3572301 Identification of COVID-SARS Variants Based on Lactate Test Results
Authors: Zoltan Horvath, Dora Nagy
Abstract:
In this research, it was examined whether individual COVID variants cause differences in the lactate curve of cyclists. After all, the virus variants attacked different organs in our body during the infections. During our tests, we used a traditional lactate step test, the results of which were compared with the values before the infection. In the tests, it has been proven that different virus variants show unique lactate curves. In this way, based on the lactate curve, it is possible to identify which variant caused the disease. Thanks to this, it has been shorten the return time, because we can apply the best return protocol after infection to the competitors.Keywords: COVID-Sars19, lactate, virus mutation, lactate profile
Procedia PDF Downloads 672300 Internet as a Marketing Tool for Tourism Promotion
Authors: Emeka Okonkwo
Abstract:
The Information Technology (IT) has prevailed over all functions of strategic and operational management. The Internet (a product of information technology) has increasingly become a popular medium for marketing. This paper examines the potentials of Internet for tourism marketing. To achieve this, the paper x-rays the characteristics of tourism marketing and examines the application of the Internet in tourism marketing. It is argued that the use of Internet for tourism marketing will not only reach a broad audience and reduce the cost of transaction (by conventional methods used by travel agents in times past), but, will also alleviate the problems of identification, authentication and confirmation of travels/package tours by tourists as well as promotion of tourism industry.Keywords: internet, marketing, tourism, tourism management
Procedia PDF Downloads 4192299 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System
Authors: Mounir Bekaik, Messaoud Ramdani
Abstract:
We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer
Procedia PDF Downloads 3392298 Modeling of Crack Growth in Railway Axles under Static Loading
Authors: Zellagui Redouane, Bellaouar Ahmed, Lachi Mohammed
Abstract:
The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS.Keywords: crack growth, static load, railway axle, lifetime
Procedia PDF Downloads 3652297 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)
Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar
Abstract:
Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus
Procedia PDF Downloads 65