Search results for: red sweet pepper powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1090

Search results for: red sweet pepper powder

460 Assessing the Lifestyle Factors, Nutritional and Socioeconomic Status Associated with Peptic Ulcer Disease: A Cross-Sectional Study among Patients at the Tema General Hospital of Ghana

Authors: Marina Aferiba Tandoh, Elsie Odei

Abstract:

Peptic Ulcer Disease (PUD) is amongst the commonest gastrointestinal problems that require emergency treatment in order to preserve life. The prevalence of PUD is increasing within the Ghanaian population, deepening the need to identify factors that are associated with its occurrence. This cross-sectional study assessed the nutritional status, socioeconomic and lifestyle factors associated with PUD among patients attending the Out-Patient Department of the Tema General Hospital of Ghana. A food frequency questionnaire and a three-day, 24-hour recall were used to assess the dietary intakes of study participants. A standardized questionnaire was used to obtain information on the participants’ socio-demographic characteristics, lifestyle as well as medical history. The data was analyzed using SPSS version 22. The mean age of study participants was 32.8±15.41years. Females were significantly higher (61.4%) than males (38.6%) (p < 0.001). All participants had received some form of education, with tertiary education being the highest (52.6%). The majority of them managed their condition with medications only (86%), while 10.5% managed it with a combination of medications and diet. The rest were either by dietary counseling only (1.8%), or surgery only (1.8%). or herbal medicines (29.3%), which were made from home (7.2%) or bought from a medical store (10.8%). Most of the participants experienced a recurrence of the disease (42.1%). For those who had ever experienced recurrences of the disease, it happened when they ate acidic foods (1.8%), ate bigger portions (1.8%), starved themselves (1.8%), or were stressed (1.8%). Others also had triggers when they took certain medications (1.8%) or ate too much pepper (1.8%). About 49% of the participants were either overweight or obese with a recurrence of PUD (p>0.05). Obese patients had the highest rate of PUD recurrences (41%). Drinking alcohol was significantly associated with the recurrence of PUD (χ2= 5.243, p=0.026). Other lifestyles, such as weed smoking, fasting, and use of herbal medicine and NSAIDs did not have any significant association with the disease recurrence. There was no significant correlation between the various dietary patterns and anthropometric parameters except dietary pattern one (salty snacks, regular soft drinks, milk, sweetened yogurt, ice cream, and cooked vegetables), which had a positive correlation with weight (p=0.002) and BMI (p=0.038). PUD patients should target weight reduction actions and reduce alcohol intake as measures to control the recurrence of the disease. Nutrition Education among this population must be promoted to minimize the recurrence of PUD.

Keywords: Dietary patterns, lifestyle factors, nutritional status, peptic ulcer disease

Procedia PDF Downloads 59
459 Medical and Dietary Potentials of Mare's Milk in Liver Diseases

Authors: Bakytzhan Bimbetov, Abay Zhangabilov, Saule Aitbaeva, Galymzhan Meirambekov

Abstract:

Mare’s milk (saumal) contains in total about 40 biological components necessary for the human body. The most significant among them are amino acids, fats, carbohydrates, enzymes (lysozyme, amylase), more minerals and vitamins which are well balanced with each other. In Kazakhstan, Company "Eurasia Invest Ltd.” produces a freeze-dried saumal in form of powder by the use of modern German innovative technology by means of evaporating at low temperature (-35°C) with an appropriate pasteurization. Research of freeze-dried biomilk for the qualitative content showed that main ingredients of freshly drown milk are being preserved. We are currently studying medical and dietary properties of freeze-dried mare's milk for diseases of the digestive system, including for nonalcoholic steatohepatitis (NASH) and liver cirrhosis (LC) viral etiology. The studied group consisted of 14 patients with NASH, and 7 patients with LC viral etiology of Class A severity degree as per Child-Pugh. Patients took freeze-dried saumal, preliminary dissolved in boiled warm water (24 g. powder per 200 ml water) 3-4 times a day for a month in conjunction with basic therapy. The results were compared to a control group (11 patients with NASH and LC) who received only basic therapy without mare’s milk. Results of preliminary research showed an improvement of subjective and objective conditions of all patients, but more significant improvement of clinical symptoms and syndromes were observed in the treatment group compared to the control one. Patients with NASH significantly over time compared to the beginning of therapy decreased asthenic and dyspeptic syndromes (p<0,01). Hepatomegaly, identified on the basis of ultrasound prior to treatment was observed in 92,8±2,4% of patients, and after combination therapy hepatomegaly the rate decreased by 14,3%, amounting to 78,5±2,8%. Patients with LC also noted the improvement of asthenic (p<0,01) and dyspeptic (p<0,05) syndromes and hemorrhagic syndrome (nosebleeds and bleeding gums when brushing your teeth, p<0,05), and jaundice. Laboratory study also showed improvement in the research group, but more significant changes were observed in the experimental group. Group of patients with NASH showed a significant improvement of index in cytolysis in conjunction with a combination therapy (p<0,05). In the control group, these indicators were also improved, but they were not statistically reliable (p>0,05). Markers of liver failure were additionally studied during the study of laboratory parameters in patients with liver cirrhosis, in particular, bilirubin, albumin and prothrombin index (PTI). Combined therapy with the use of basic treatment and mare's milk showed a significant improvement in cytolysis and bilirubin (p<0,05). In our opinion, a very important and interesting fact is that, in conjunction with basic therapy, the use of mare's milk revealed an improvement of liver function in the form of normalized PTI and albumin in patients with liver cirrhosis viral etiology. Results of this work have shown therapeutic efficiency of the use of mare's milk in complex treatment of patients with liver disease and require further in-depth study.

Keywords: liver cirrhosis, non-alcohol steatohepatitis, saumal, mare’s milk

Procedia PDF Downloads 204
458 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields

Authors: Babak Rezaei, Arash Zargar Shoushtari

Abstract:

Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.

Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields

Procedia PDF Downloads 337
457 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation

Authors: N. Yang, R. Linforth, I. Fisk

Abstract:

The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.

Keywords: biscuit, flavour stability, food quality, vanillin

Procedia PDF Downloads 491
456 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 42
455 Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream

Authors: Naruemon Prapasuwannakul, Supitcha Boonchai, Nawapat Pengpengpit

Abstract:

The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation.

Keywords: ice cream, germinated brown rice, coconut pulp, milk, cream

Procedia PDF Downloads 200
454 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore

Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan

Abstract:

The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.

Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore

Procedia PDF Downloads 264
453 S-N-Pf Relationship for Steel Fibre Reinforced Concrete Made with Cement Additives

Authors: Gurbir Kaur, Surinder Pal Singh

Abstract:

The present study is a part of the research work on the effect of limestone powder (LP), silica fume (SF) and metakaolin (MK), on the flexural fatigue performance of steel fibre reinforced concrete (SFRC). Corrugated rectangular steel fibres of size 0.6x2.0x35 mm at a constant volume fraction of 1.0% have been incorporated in all mix combinations as the reinforcing material. Three mix combinations were prepared by replacing 30% of ordinary Portland cement (OPC) by weight with these cement additives in binary and ternary fashion to demonstrate their contribution. An experimental programme was conducted to obtain the fatigue lives of all mix combinations at various stress levels. The fatigue life data have been analysed as an attempt to determine the relationship between stress level ‘S’, number of cycles to failure ‘N’ and probability of failure ‘Pf’ for all mix combinations. The experimental coefficients of the fatigue equation have also been obtained from the fatigue data to represent the S-N-Pf curves analytically.

Keywords: cement additives, fatigue life, probability of failure, steel fibre reinforced concrete

Procedia PDF Downloads 396
452 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 251
451 Effect of Dehydration Methods of the Proximate Composition, Mineral Content and Functional Properties of Starch Flour Extracted from Maize

Authors: Olakunle M. Makanjuola, Adebola Ajayi

Abstract:

Effect of the dehydrated method on proximate, functional and mineral properties of corn starch was evaluated. The study was carried and to determine the proximate, functional and mineral properties of corn starch produced using three different drying methods namely (sun) (oven) and (cabinet) drying methods. The corn starch was obtained by cleaning, steeping, milling, sieving, dewatering and drying corn starch was evaluated for proximate composition, functional properties, and mineral properties to determine the nutritional properties, moisture, crude protein, crude fat, ash, and carbohydrate were in the range of 9.35 to 12.16, 6.5 to 10.78 1.08 to 2.5, 1.08 to 2.5, 4.0 to 5.2, 69.58 to 75.8% respectively. Bulk density range between 0.610g/dm3 to 0.718 g/dm3, water, and oil absorption capacities range between 116.5 to 117.25 and 113.8 to 117.25 ml/g respectively. Swelling powder had value varying from 1.401 to 1.544g/g respectively. The results indicate that the cabinet method had the best result item of the quality attribute.

Keywords: starch flour, maize, dehydration, cabinet dryer

Procedia PDF Downloads 217
450 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 204
449 Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites

Authors: M. Alsaadi, A. Erkliğ, M. Bulut

Abstract:

This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials.

Keywords: particle-reinforcement, sewage sludge ash, polymer matrix composites, mechanical properties

Procedia PDF Downloads 346
448 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 219
447 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 374
446 Review on Wear Behavior of Magnesium Matrix Composites

Authors: Amandeep Singh, Niraj Bala

Abstract:

In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites.

Keywords: hardness, magnesium matrix composites, reinforcement, wear

Procedia PDF Downloads 305
445 Influence of Substitution on Structure of Tin Lantanium Pyrochlore La₂₋ₓSrₓSn₂O₇₋δ(0 ≤ x ≤ 0.25) Solid-Oxide Fuel Cells

Authors: Bounar Nedjemeddine

Abstract:

Materials with the pyrochlore lattice structure have attracted much recent attention due to their wide applications in ceramic thermal barrier coatings, high-permittivity dielectrics, and potential solid electrolytes in solid-oxide fuel cells. The work described in this paper is devoted to the synthesis and characterization of a pyrochlore structure based on lanthanum (La₂O₃) and tin (SnO₂) oxides of general formula La₂Sn₂O₇, substituted by Sr at the site La. Their structures were determined from X-ray powder diffraction using CELFER analysis. All the compositions present the space group Fd-3m. The substitution of La by Sr in the La₂Sn₂O₇ compound causes a variation of the cell parameters. The difference in charge between La³⁺ and Sr²⁺ and the difference in size cause the cell parameters to decrease from a=10.7165 A° to a=10.6848 A° for the substitution rates (x = 0.05, 0.1, 0.15 ...), which leads to a decrease in the volume of the mesh. For a substitution rate x = 0.25, there is an increase in the cell parameters (a=10.7035A°), which can be explained by a competitiveness of the size effect and the presence of a gap in the structure which go in the opposite direction.

Keywords: solid-oxide fuel cells, structure, pyrochlore, X-ray diffraction

Procedia PDF Downloads 106
444 Poverty Alleviation and Agricultural Management Policies in Nasarawa State of Nigeria: Lessons from the Roots and Tuber Crops Expansion for Increased Food Production (1996-2011)

Authors: Yahaya Abdullahi Adadu, Canice Erunke Esidene

Abstract:

The problems of socio-economic development have been a major challenge bedeviling the Nigerian post-colonial state since her political independence from Britain in October I,1960. Critics have argued that the dilemma of Nigeria’s economic survival started since the early 1970s when the agricultural sector which supposedly was the economic mainstay has been literally substituted with the gains of the oil petro-dollars coming from the foreign exchange earnings. Agriculture therefore, which used to be a major player in terms of human and national upliftment in Nigeria have been given a back seat while oil and gas has taken over the front burner in virtually every aspect of Nigeria’s national life. This study is therefore an exposition of the efforts of the Nasarawa state government in reversing the dangerous trend in which the over reliance on oil wealth has caused to persons, individuals and groups in terms of the prevailing levels of poverty and other attendant vices therein. The study focuses on the management policies of the various regimes in the state since its inception in 1996, with particular reference to the regime types-military and civilian alike in propelling the needed policy change, which could transform the economy in line with international best practices. Particular emphasis will be paid to the BADA-KOSHI agricultural scheme whose interest was to recover the lost glory of rural agriculture through series of roots and tuber expansion, and particularly such crops as yam minissetts, cassava, sweet potatoes and coco-yam, respectively. The paper covers the period between 1996 -2011, a period considered to be critical in the agricultural revolution of the state. The study adopts a theoretical approach via secondary methods of analysis for the efficient explanations of the burning issues under consideration. The paper sums up with policy recommendations and conclusion.

Keywords: poverty, agriculture, Badakoshi, rural policy management

Procedia PDF Downloads 422
443 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: hydrogen separation, perovskite, proton conducting membrane.

Procedia PDF Downloads 318
442 Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements

Authors: Manel Hannachi, Mustapha Nechiche, Said Azem

Abstract:

This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results.

Keywords: alfa short fibers, biodegradable composite, olive kernels, poly-lactic acid

Procedia PDF Downloads 129
441 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 214
440 Agricultural Waste Recovery For Industrial Effluent Treatment And Environmental Protection

Authors: Salim Ahmed

Abstract:

In many countries, water pollution from industrial effluents is a real problem. It may have a negative impact on the environment. To minimize the adverse effects of these contaminants, various methods are used to improve effluent purification, including physico-chemical processes such as adsorption.The present study focuses on applying a naturally biodegradable adsorbent based on argan (southern Morocco) in a physico-chemical adsorption process to reduce the harmful effects of pollutants on the environment. Tests were carried out with the cationic dye methylene blue (MB) and revealed that removal is significantly higher within the first 15 minutes. The parameters studied in this study are adsorbent mass and concentration. The Freundlich model provides an excellent example of the adsorption phenomenon of BMs over argan powder. The results of this study show that argan kernels are a highly beneficial alternative for local communities, as they help to achieve a triple objective: pollution reduction, waste recovery and water recycling.

Keywords: environmental protection, activated carbon, water treatment, adsorption

Procedia PDF Downloads 47
439 In vitro Bioacessibility of Phenolic Compounds from Fruit Spray Dried and Lyophilized Powder

Authors: Carolina Beres, Laurine Da Silva, Danielle Pereira, Ana Ribeiro, Renata Tonon, Caroline Mellinger-Silva, Karina Dos Santos, Flavia Gomes, Lourdes Cabral

Abstract:

The health benefits of bioactive compounds such as phenolics are well known. The main source of these compounds are fruits and derivates. This study had the objective to study the bioacessibility of phenolic compounds from grape pomace and juçara dried extracts. For this purpose both characterized extracts were submitted to a simulated human digestion and the total phenolic content, total anthocyanins and antioxidant scavenging capacity was determinate in digestive fractions (oral, gastric, intestinal and colonic). Juçara had a higher anthocianins bioacessibility (17.16%) when compared to grape pomace (2.08%). The opposite result was found for total phenolic compound, where the higher bioacessibility was for grape (400%). The phenolic compound increase indicates a more accessible compound in the human gut. The lyophilized process had a beneficial impact in the final accessibility of the phenolic compounds being a more promising technique.

Keywords: bioacessibility, phenolic compounds, grape, juçara

Procedia PDF Downloads 189
438 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives

Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton

Abstract:

Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.

Keywords: hydrogel, metal ions, nanowire, nucleoside

Procedia PDF Downloads 239
437 Wear Behavior and Microstructure of Eutectic Al - Si Alloys Manufactured by Selective Laser Melting

Authors: Nan KANG, Pierre Coddet, Hanlin Liao, Christian Coddet

Abstract:

In this study, the almost dense eutectic Al-12Si alloys were fabricated by selective laser melting (SLM) from the powder mixture of pure Aluminum and pure Silicon, which show the mean particle sizes of 30 μm and 5μm respectively, under the argon environment. The image analysis shows that the highest value of relative density (95 %) was measured for the part obtained at the laser power of 280 W. X ray diffraction (XRD), Optical microscope (OM) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectroscopy (EDS) were employed to determine the microstructures of the SLM-processed Al-Si alloy, which illustrate that the SLM samples present the ultra-fine microstructure. The XRD results indicate that no clearly phase transformation happened during the SLM process. Additionally, the vaporization behavior of Aluminum was detected for the parts obtained at high laser power. Besides, the maximum microhardness value, about 95 Hv, was measured for the samples obtained at laser power of 280 W, and which shows the highest wear resistance.

Keywords: al-Si alloy, selective laser melting, wear behavior, microstructure

Procedia PDF Downloads 376
436 Effects of Different Calcination Temperature on the Geopolymerization of Fly Ash

Authors: Nurcan Tugrul, Funda Demir, Hilal Ozkan, Nur Olgun, Emek Derun

Abstract:

Geopolymers are aluminosilicate-containing materials. The raw materials of the geopolymerization can be natural material such as kaolinite, metakaolin (calcined kaolinite), clay, diatomite, rock powder or can also be industrial by-products such as fly ash, silica fume, blast furnace slag, rice-husk ash, mine tailing, red mud, waste slag, etc. Reactivity of raw materials in geopolymer production is very important for achieving high reaction grade. Fly ash used in geopolymer production has been calcined to obtain tetrahedral SiO₂ and Al₂O₃ structures. In this study, fly ash calcined at different temperatures (700, 800 and 900 °C), and Al₂O₃ addition (Al₂O₃ at min (0%) and max (100%)) were used to produce geopolymers. HCl dissolution method was applied to determine the geopolymerization percentage of samples and Fourier Transform Infrared (FTIR) Spectroscopy was used to find out the optimum calcination temperature for geopolymerization. According to obtained results, the highest geopolymerization percentage (0% alumina added geopolymer equal to 35.789%; 100% alumina added geopolymer equal to 40.546%) was obtained in samples using fly ash calcined at 800 °C.

Keywords: geopolymer, fly ash, Al₂O₃ addition, calcination

Procedia PDF Downloads 158
435 Photoluminescence Properties of Lu1.98Er0.02Ti2O7 Pyrochlore (A2B2O7) Phosphor

Authors: Esra Öztürk, Erkul Karacaoglu

Abstract:

Pyrochlores, having compounds of the general formula, A2B2O7 (A and B are metals/rare earths) are important class of materials thanks to having technological applications like in luminescence, ionic conductivity, nuclear waste immobilization etc. The rare earths included pyrochlore compounds have also potential photoluminescence characteristics. In this context, Er3+-activated Lu2Ti2O7 pyrochlore was chosen and synthesized through a high-temperature solid-state reaction route that was sintered under the open atmosphere in this study. The optimal reaction conditions to obtain expected single phase system, the thermal analysis (DTA/TG) were carried out. The X-ray powder diffraction (XRD) was used to determine phase properties of the sample. The photoluminescence (PL) results were done to obtain excitation, emission and decay time properties by a PL spectrometer under room temperature. According to the PL, there are excitation bands at 352 nm, 388 nm, 423 nm and 453 nm that are due to 4I15/2 → 2G7/2, 4I15/2 → 4G11/2 and 4I15/2 → 4F5/2 transitions of Er3+ ions, respectively. The emission bands are placed at 582 nm, 677 nm and 762 nm that are associated with 2H11/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2, 4I9/2 → 4I15/2 transitions of Er3+ ions, respectively.

Keywords: Er3+, Lu2Ti2O7, photoluminescence, pyrochlore, rare-earths

Procedia PDF Downloads 250
434 Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana

Keywords: Steviol Glycosides, Skoog, Murashige, Clavebactor michiganensis

Procedia PDF Downloads 66
433 Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana.

Keywords: Stevia rebaudiana, Steviol Glycosides, callus, Xanthomonas campestris

Procedia PDF Downloads 59
432 Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride

Authors: S. V. Patil , S. K. Sahoo, K. Y. Chougule, S. S. Patil

Abstract:

Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra.

Keywords: spherical crystallization, pioglitazone hydrochloride, compactibility, packability

Procedia PDF Downloads 330
431 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 401