Search results for: predictive coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1577

Search results for: predictive coding

947 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
946 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories

Procedia PDF Downloads 283
945 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 413
944 Procalcitonin and Other Biomarkers in Sepsis Patients: A Prospective Study

Authors: Neda Valizadeh, Soudabeh Shafiee Ardestani, Arvin Najafi

Abstract:

Objectives: The aim of this study is to evaluate the association of mid-regional pro-atrial natriuretic peptide (MRproANP), procalcitonin (PCT), proendothelin-1 (proET-1) levels with sepsis severity in Emergency ward patients. Materials and Methods: We assessed the predictive value of MRproANP, PCT, copeptin, and proET-1 in early sepsis among patients referring to the emergency ward with a suspected sepsis. Results-132 patients were enrolled in this study. 45 (34%) patients had a final diagnosis of sepsis. A higher percentage of patients with definite sepsis had systemic inflammatory response syndrome (SIRS) criteria at initial visit in comparison with no-sepsis patients (P<0.05) and were admitted to the hospital (P<0.05). PCT levels were higher in sepsis patients [P<0.05]. There was no significant differences for MRproANP or proET-1 in sepsis patients (P=0.47). Conclusion: A combination of SIRS criteria and PCT levels is beneficial for the early sepsis diagnosis in emergency ward patients with a suspicious infection disease.

Keywords: emergency, prolactin, sepsis, biomarkers

Procedia PDF Downloads 439
943 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 391
942 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance

Procedia PDF Downloads 124
941 Association of Major Histocompatibility Complex with Cell Mediated Immunity

Authors: Atefeh Esmailnejad, Gholamreza Nikbakht Brujeni

Abstract:

Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies.

Keywords: MHC, cell-mediated immunity, broiler, chicken

Procedia PDF Downloads 145
940 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490
939 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis

Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins

Abstract:

Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.

Keywords: prostate cancer, stem cell, genomic mutation, RNAseq

Procedia PDF Downloads 18
938 Low Density Parity Check Codes

Authors: Kassoul Ilyes

Abstract:

The field of error correcting codes has been revolutionized by the introduction of iteratively decoded codes. Among these, LDPC codes are now a preferred solution thanks to their remarkable performance and low complexity. The binary version of LDPC codes showed even better performance, although it’s decoding introduced greater complexity. This thesis studies the performance of binary LDPC codes using simplified weighted decisions. Information is transported between a transmitter and a receiver by digital transmission systems, either by propagating over a radio channel or also by using a transmission medium such as the transmission line. The purpose of the transmission system is then to carry the information from the transmitter to the receiver as reliably as possible. These codes have not generated enough interest within the coding theory community. This forgetfulness will last until the introduction of Turbo-codes and the iterative principle. Then it was proposed to adopt Pearl's Belief Propagation (BP) algorithm for decoding these codes. Subsequently, Luby introduced irregular LDPC codes characterized by a parity check matrix. And finally, we study simplifications on binary LDPC codes. Thus, we propose a method to make the exact calculation of the APP simpler. This method leads to simplifying the implementation of the system.

Keywords: LDPC, parity check matrix, 5G, BER, SNR

Procedia PDF Downloads 153
937 Translation and Validation of the Thai Version of the Japanese Sleep Questionnaire for Preschoolers

Authors: Natcha Lueangapapong, Chariya Chuthapisith, Lunliya Thampratankul

Abstract:

Background: There is a need to find an appropriate tool to help healthcare providers determine sleep problems in children for early diagnosis and management. The Japanese Sleep Questionnaire for Preschoolers (JSQ-P) is a parent-reported sleep questionnaire that has good psychometric properties and can be used in the context of Asian culture, which is likely suitable for Thai children. Objectives: This study aimed to translate and validate the Japanese Sleep Questionnaire for Preschoolers (JSQ-P) into a Thai version and to evaluate factors associated with sleep disorders in preschoolers. Methods: After approval by the original developer, the cross-cultural adaptation process of JSQ-P was performed, including forward translation, reconciliation, backward translation, and final approval of the Thai version of JSQ-P (TH-JSQ-P) by the original creator. This study was conducted between March 2021 and February 2022. The TH-JSQ-P was completed by 2,613 guardians whose children were aged 2-6 years twice in 10-14 days to assess its reliability and validity. Content validity was measured by an index of item-objective congruence (IOC) and a content validity index (CVI). Face validity, content validity, structural validity, construct validity (discriminant validity), criterion validity and predictive validity were assessed. The sensitivity and specificity of the TH-JSQ-P were also measured by using a total JSQ-P score cutoff point 84, recommended by the original JSQ-P and each subscale score among the clinical samples of obstructive sleep apnea syndrome. Results: Internal consistency reliability, evaluated by Cronbach’s α coefficient, showed acceptable reliability in all subscales of JSQ-P. It also had good test-retest reliability, as the intraclass correlation coefficient (ICC) for all items ranged between 0.42-0.84. The content validity was acceptable. For structural validity, our results indicated that the final factor solution for the Th-JSQ-P was comparable to the original JSQ-P. For construct validity, age group was one of the clinical parameters associated with some sleep problems. In detail, parasomnias, insomnia, daytime excessive sleepiness and sleep habits significantly decreased when the children got older; on the other hand, insufficient sleep was significantly increased with age. For criterion validity, all subscales showed a correlation with the Epworth Sleepiness Scale (r = -0.049-0.349). In predictive validity, the Epworth Sleepiness Scale was significantly a strong factor that correlated to sleep problems in all subscales of JSQ-P except in the subscale of sleep habit. The sensitivity and specificity of the total JSQ-P score were 0.72 and 0.66, respectively. Conclusion: The Thai version of JSQ-P has good internal consistency reliability and test-retest reliability. It passed 6 validity tests, and this can be used to evaluate sleep problems in preschool children in Thailand. Furthermore, it has satisfactory general psychometric properties and good reliability and validity. The data collected in examining the sensitivity of the Thai version revealed that the JSQ-P could detect differences in sleep problems among children with obstructive sleep apnea syndrome. This confirmed that the measure is sensitive and can be used to discriminate sleep problems among different children.

Keywords: preschooler, questionnaire, validation, Thai version

Procedia PDF Downloads 104
936 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia PDF Downloads 153
935 Performance of VSAT MC-CDMA System Using LDPC and Turbo Codes over Multipath Channel

Authors: Hassan El Ghazi, Mohammed El Jourmi, Tayeb Sadiki, Esmail Ahouzi

Abstract:

The purpose of this paper is to model and analyze a geostationary satellite communication system based on VSAT network and Multicarrier CDMA system scheme which presents a combination of multicarrier modulation scheme and CDMA concepts. In this study the channel coding strategies (Turbo codes and LDPC codes) are adopted to achieve good performance due to iterative decoding. The envisaged system is examined for a transmission over Multipath channel with use of Ku band in the uplink case. The simulation results are obtained for each different case. The performance of the system is given in terms of Bit Error Rate (BER) and energy per bit to noise power spectral density ratio (Eb/N0). The performance results of designed system shown that the communication system coded with LDPC codes can achieve better error rate performance compared to VSAT MC-CDMA system coded with Turbo codes.

Keywords: satellite communication, VSAT Network, MC-CDMA, LDPC codes, turbo codes, uplink

Procedia PDF Downloads 504
934 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 391
933 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 218
932 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 66
931 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 779
930 Comparison and Validation of a dsDNA biomimetic Quality Control Reference for NGS based BRCA CNV analysis versus MLPA

Authors: A. Delimitsou, C. Gouedard, E. Konstanta, A. Koletis, S. Patera, E. Manou, K. Spaho, S. Murray

Abstract:

Background: There remains a lack of International Standard Control Reference materials for Next Generation Sequencing-based approaches or device calibration. We have designed and validated dsDNA biomimetic reference materials for targeted such approaches incorporating proprietary motifs (patent pending) for device/test calibration. They enable internal single-sample calibration, alleviating sample comparisons to pooled historical population-based data assembly or statistical modelling approaches. We have validated such an approach for BRCA Copy Number Variation analytics using iQRS™-CNVSUITE versus Mixed Ligation-dependent Probe Amplification. Methods: Standard BRCA Copy Number Variation analysis was compared between mixed ligation-dependent probe amplification and next generation sequencing using a cohort of 198 breast/ovarian cancer patients. Next generation sequencing based copy number variation analysis of samples spiked with iQRS™ dsDNA biomimetics were analysed using proprietary CNVSUITE software. Mixed ligation-dependent probe amplification analyses were performed on an ABI-3130 Sequencer and analysed with Coffalyser software. Results: Concordance of BRCA – copy number variation events for mixed ligation-dependent probe amplification and CNVSUITE indicated an overall sensitivity of 99.88% and specificity of 100% for iQRS™-CNVSUITE. The negative predictive value of iQRS-CNVSUITE™ for BRCA was 100%, allowing for accurate exclusion of any event. The positive predictive value was 99.88%, with no discrepancy between mixed ligation-dependent probe amplification and iQRS™-CNVSUITE. For device calibration purposes, precision was 100%, spiking of patient DNA demonstrated linearity to 1% (±2.5%) and range from 100 copies. Traditional training was supplemented by predefining the calibrator to sample cut-off (lock-down) for amplicon gain or loss based upon a relative ratio threshold, following training of iQRS™-CNVSUITE using spiked iQRS™ calibrator and control mocks. BRCA copy number variation analysis using iQRS™-CNVSUITE™ was successfully validated and ISO15189 accredited and now enters CE-IVD performance evaluation. Conclusions: The inclusion of a reference control competitor (iQRS™ dsDNA mimetic) to next generation sequencing-based sequencing offers a more robust sample-independent approach for the assessment of copy number variation events compared to mixed ligation-dependent probe amplification. The approach simplifies data analyses, improves independent sample data analyses, and allows for direct comparison to an internal reference control for sample-specific quantification. Our iQRS™ biomimetic reference materials allow for single sample copy number variation analytics and further decentralisation of diagnostics to single patient sample assessment.

Keywords: validation, diagnostics, oncology, copy number variation, reference material, calibration

Procedia PDF Downloads 66
929 New Possibilities for Testing UX and UI Design on Mobile Devices

Authors: Jakub Berčík, Anna Mravcová, Jana Gálová, Katarína Neomániová

Abstract:

In an era when everything is increasingly digital, consumers are always looking for new options in solutions to their everyday needs. In this context, mobile apps are developing at an exponential pace. One of the fastest growing segments of mobile technologies is, obviously, e-commerce. It can be predicted that mobile commerce will record nearly three times the global growth of e-commerce across all platforms, which indicates its importance in the given segment. The current coronavirus pandemic is also changing many of the existing paradigms both socially, economically, and technologically, which has a major impact on changing consumer behaviour and the emphasis on simplification and clarity of mobile solutions. This is the area that user experience (UX) and user interface (UI) designers deal with. Their task is to design a sufficiently attractive and interesting solution that will be available on all mobile devices and at the same time will be easy enough for the customer/visitor to get to the destination or to get the necessary information in a few clicks. The basis for changes in UX design can now be obtained not only through online analytical tools but also through neuromarketing, especially in the case of mobile devices. The paper highlights new possibilities for testing UX design applications on mobile devices using a special platform that combines a stationary eye camera (eye tracking) and facial analysis (facial coding).

Keywords: emotions, mobile design, user experience, visual attention

Procedia PDF Downloads 127
928 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code

Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare

Abstract:

Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.

Keywords: concatenated coding, low–density parity–check codes, array code, error floors

Procedia PDF Downloads 356
927 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
926 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
925 A Grounded Theory on Marist Spirituality/Charism from the Perspective of the Lay Marists in the Philippines

Authors: Nino M. Pizarro

Abstract:

To the author’s knowledge, despite the written documents about Marist spirituality/charism, nothing has been done concerning a clear theoretical framework that highlights Marist spirituality/charism from the perspective or lived experience of the lay Marists of St. Marcellin Champagnat. The participants of the study are the lay Marist - educators who are from Marist Schools in the Philippines. Since the study would like to find out the respondents’ own concepts and meanings about Marist spirituality/charism, qualitative methodology is considered the approach to be used in the study. In particular, the study will use the qualitative methods of Barney Glaser. The theory will be generated systematically from data collection, coding and analyzing through memoing, theoretical sampling, sorting and writing and using the constant comparative method. The data collection method that will be employed in this grounded theory research is the in-depth interview that is semi-structured and participant driven. Data collection will be done through snowball sampling that is purposive. The study is considering to come up with a theoretical framework that will help the lay Marists to deepen their understanding of the Marist spirituality/charism and their vocation as lay partners of the Marist Brothers of the Schools.

Keywords: grounded theory, Lay Marists, lived experience, Marist spirituality/charism

Procedia PDF Downloads 311
924 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 790
923 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 460
922 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 118
921 Access to Inclusive and Culturally Sensitive Mental Healthcare in Pharmacy Students and Residents

Authors: Esha Thakkar, Ina Liu, Kalynn Hosea, Shana Katz, Katie Marks, Sarah Hall, Cat Liu, Suzanne Harris

Abstract:

Purpose: Inequities in mental healthcare accessibility are cited as an international public health concern by the World Health Organization (WHO) and National Alliance on Mental Illness (NAMI). These disparities are further exacerbated in racial and ethnic minority groups and are especially concerning in health professional training settings such as Doctor of Pharmacy (PharmD) programs and postgraduate residency training where mental illness rates are high. The purpose of the study was to determine baseline access to culturally sensitive mental healthcare and how to improve such access and communication for racially and ethnically minoritized pharmacy students and residents at one school of pharmacy and a partnering academic medical center in the United States. Methods: This IRB-exempt study included 60-minute focus groups conducted in person or online from November 2021 to February 2022. Eligible participants included PharmD students in their first (P1), second (P2), third (P3), or fourth year (P4) or pharmacy residents completing a postgraduate year 1 (PGY1) or PGY2 who identify as Black, Indigenous, or Person of Color (BIPOC). There were four core theme questions asked during the focus groups to lead the discussion, specifically on the core themes of personal barriers, identities, areas that are working well, and areas for improvement. Participant responses were transcribed and analyzed using an open coding system with two individual reviews, followed by collaborative and intentional discussion and, as needed, an external audit of the coding by a third research team member to reach a consensus on themes. Results: This study enrolled 26 participants, with eight P1, five P2, seven P3, two P4, and four resident participants. Within the four core themes of barriers, identities, areas working well, and areas for improvement, emerging subthemes included: lack of time, access to resources, and stigma under barriers; lack of representation, cultural and family stigma, and gender identities for identity barriers; supportive faculty, sense of community and culture supporting paid time off for areas going well; and wellness days, reduced workload and diversity of the workforce in areas of improvement. Subthemes sometimes varied within a core theme depending on the participant year. Conclusions: There is a gap in the literature in addressing barriers and disparities in mental health access for pharmacy trainees who identify as BIPOC. We identified key findings in regards to barriers, identities, areas going well and areas for improvement that can inform the School and the Residency Program in two priority initiatives of well-being and diversity equity and inclusion in creating actionable recommendations for trainees, program directors, and employers of our institutions, and also has the potential to provide insight for other organizations about the structures influencing access to culturally sensitive care in BIPOC trainees. These findings can inform organizations on how to continue building on communication with those who identify as BIPOC and improve access to care.

Keywords: mental health, disparities, minorities, wellbeing, identity, communication, barriers

Procedia PDF Downloads 92
920 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada

Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone

Abstract:

Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.

Keywords: cameras, monitoring, recreational fishing, stock assessment

Procedia PDF Downloads 122
919 Impacts of Racialization: Exploring the Relationships between Racial Discrimination, Racial Identity, and Activism

Authors: Brianna Z. Ross, Jonathan N. Livingston

Abstract:

Given that discussions of racism and racial tensions have become more salient, there is a need to evaluate the impacts of racialization among Black individuals. Racial discrimination has become one of the most common experiences within the Black American population. Likewise, Black individuals have indicated a need to address their racial identities at an earlier age than their non-Black peers. Further, Black individuals have been found at the forefront of multiple social and political movements, including but not limited to the Civil Rights Movement, Black Lives Matter, MeToo, and Say Her Name. Moreover, the present study sought to explore the predictive relationships that exist between racial discrimination, racial identity, and activism in the Black community. The results of standard and hierarchical regression analyses revealed that racial discrimination and racial identity significantly predict each other, but only racial discrimination is a significant predictor for the relationship to activism. Nonetheless, the results from this study will provide a basis for social scientists to better understand the impacts of racialization on the Black American population.

Keywords: activism, racialization, racial discrimination, racial identity

Procedia PDF Downloads 152
918 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83