Search results for: physical-chemical features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3843

Search results for: physical-chemical features

3213 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 83
3212 The Great Mimicker: A Case of Disseminated Tuberculosis

Authors: W. Ling, Mohamed Saufi Bin Awang

Abstract:

Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.

Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis

Procedia PDF Downloads 189
3211 Comparative Gross Anatomical Studies of the Long Bones of the Adult Chinkara and in the Adult Beetal Goat

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Habib –ur- Rehman, Imad Khan, Muqader Shah

Abstract:

The objective of this study was to examine the osteomorphological differences between the long bones of adult Chinkara and an adult Beetal goat, using visual observation, which has still not studied. The osseous remains of these small-sized ungulates often encountered, but cannot distinguish, because of the lack of literature. Specimens of the adult Chinkara of known age and sex for osteomorphological studies are collected from the Manglot Wildlife Park and Ungulate Breeding Centre, Nizampur, Pakistan, while the bones of adult Beetal goats are obtained after slaughtering in a slaughterhouse. The research is carried out at the University of Veterinary and Animal Sciences, Lahore, Pakistan. In this research, the main morphological features recorded in the long bones of thoracic limb and pelvic limb of the adult Chinkara, by comparing them to those of the Beetal goat. The most important differences between the two species are noted in the scapula, the humerus, the radius and ulna, the metacarpal, femur, tibia metatarsal and phalanges. In conclusion, the present study suggests that the morphology of the long bones of adult Chinkara has different from the Beetal goat in various points of view. Based on these recorded points, long bones of these two species can easily be differentiated. The study is helpful in zooarcheological, comparative osteometric studies, for forensic specialists and veterinary anatomists.

Keywords: Beetal goat, Chinkara, comparative morphological features, long bones, osteology

Procedia PDF Downloads 133
3210 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
3209 Geomorphological Features and their Significance Along Dhauli Ganga River Valley in North-Eastern Kumaun Himalaya in Pithauragah District, Uttarakhand, India

Authors: Puran Chandra Joshi

Abstract:

The Himalaya is the newest mountain system on this earth. This highest as well as fragile mountain system is still rising up. The tectonic activities have been experienced by this entire area, so the geomorphology of the region is affected by it. As we know, geomorphology is the study of landforms and their processes on the earth surface. These landforms are very important for human beings and other creatures on this planet. Present paper traces out the geomorphological features and their significance along Dhauli Ganga river valley in the Himalaya. Study area falls in higher Himalaya, which has experienced glacial and fluvial processes. Dhauli Ganga river is a considerable tributary of river kali, which is the part of huge Gangetic system. Dhauli originates in the form of two tributaries from valley glaciers of the southern slopes of Kumaun-Tibbet water divide. The upper catchment of this river has been carved by the glacial activity. The area of investigation is a remote regionin, Kumaun Himalaya. The native people do seasonal migration due to harsh winters. In summers, they return back with their cattle. In this season, they also grow potatoes and pulses, especiallybeanson river terraces. This study is important for making policies in the entire area. Area has witnessed big landslide in the recent past. So, the present study becomes more important.

Keywords: himalaya, geomorphology, glacial, tectonics

Procedia PDF Downloads 122
3208 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 23
3207 A Corpus-Based Analysis on Code-Mixing Features in Mandarin-English Bilingual Children in Singapore

Authors: Xunan Huang, Caicai Zhang

Abstract:

This paper investigated the code-mixing features in Mandarin-English bilingual children in Singapore. First, it examined whether the code-mixing rate was different in Mandarin Chinese and English contexts. Second, it explored the syntactic categories of code-mixing in Singapore bilingual children. Moreover, this study investigated whether morphological information was preserved when inserting syntactic components into the matrix language. Data are derived from the Singapore Bilingual Corpus, in which the recordings and transcriptions of sixty English-Mandarin 5-to-6-year-old children were preserved for analysis. Results indicated that the rate of code-mixing was asymmetrical in the two language contexts, with the rate being significantly higher in the Mandarin context than that in the English context. The asymmetry is related to language dominance in that children are more likely to code-mix when using their nondominant language. Concerning the syntactic categories of code-mixing words in the Singaporean bilingual children, we found that noun-mixing, verb-mixing, and adjective-mixing are the three most frequently used categories in code-mixing in the Mandarin context. This pattern mirrors the syntactic categories of code-mixing in the Cantonese context in Cantonese-English bilingual children, and the general trend observed in lexical borrowing. Third, our results also indicated that English vocabularies that carry morphological information are embedded in bare forms in the Mandarin context. These findings shed light upon how bilingual children take advantage of the two languages in mixed utterances in a bilingual environment.

Keywords: bilingual children, code-mixing, English, Mandarin Chinese

Procedia PDF Downloads 214
3206 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, tissue, indentation, properties

Procedia PDF Downloads 358
3205 Finding the Right Regulatory Path for Islamic Banking

Authors: Meysam Saidi

Abstract:

While the specific externalities and required regulatory measures in relation to Islamic banking are fairly uncertain, the business is growing across the world. Unofficial data indicate that the Islamic Finance market is growing with annual rate of 15% and it has reached 1.3 $ trillion size. This trend is associated with inherent systematic connection of Islamic financial institutions to other entities and different sectors of economies. Islamic banking has been subject of market development policies in major economies, most notably the UK. This trend highlights the need for identification of distinct risk features of Islamic banking and crafting customized regulatory measures. So far there has not been a significant systemic crisis in this market which can be attributed to its distinct nature. However, the significant growth and spread of its products worldwide necessitate an in depth study of its nature for customized congruent regulatory measures. In the post financial crisis era some market analysis and reports suggested that the Islamic banks fairly weathered the crisis. As far as heavily blamed conventional financial products such as subprime mortgage backed securities and speculative credit default swaps were concerned the immunity claim can be considered true, as Islamic financial institutions were not directly exposed to such products. Nevertheless, similar to the experience of the conventional banking industry, it can be only a matter of time for Islamic banks to face failures that can be specific to the nature of their business. Using the experience of conventional banking regulations and identifying those peculiarities of Islamic banking that need customized regulatory approach can aid to prevent major failures. Frank Knight has stated that “We perceive the world before we react to it, and we react not to what we perceive, but always to what we infer”. The debate over congruent Islamic banking regulations might not be an exception to Frank Knight’s statement but I will try to base my discussion on concrete evidences. This paper first analyzes both theoretical and actual features of Islamic banking in order to ascertain to its peculiarities in terms of market stability and other externalities. Next, the paper discusses distinct features of Islamic financial transactions and banking which might require customized regulatory measures. Finally, the paper explores how a more transparent path for the Islamic banking regulations can be drawn.

Keywords: Islamic banking, regulation, risks, capital requirements, customer protection, financial stability

Procedia PDF Downloads 409
3204 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors

Authors: Diana Ruth Caga-Anan

Abstract:

Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.

Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices

Procedia PDF Downloads 172
3203 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
3202 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
3201 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy

Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

Abstract:

Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.

Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model

Procedia PDF Downloads 205
3200 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
3199 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations

Authors: A. Hameed, N. Upreti, P. Srivastava

Abstract:

Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.

Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary

Procedia PDF Downloads 162
3198 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 81
3197 Structural Analysis of Sheep and Goat Farms in Konya Province

Authors: Selda Uzal Seyfi

Abstract:

Goat milk is a quite important in human nutrition. In order to meet the demand to the goat and sheep milk occurring in the recent years, an increase is seen in the demand to housing projects, which will enable animals to be sheltered in the suitable environments. This study was carried out in between 2012 and 2013, in order to identify the existing cases of sheep and goat housings in the province Konya and their possibilities to be developed. In the study, in the province Konya, 25 pieces of sheep and goat farms and 46 pieces of sheep and goat housings (14 sheep housings, 3 goat housings, and 29 housings, in which both sheep and goat are bred ) that are present in the farm were investigated as material. In the study, examining the general features of the farms that are present in the region and structural features of housings that are present in the farms, it is studied whether or not they are suitable for animal breeding. As a result of the study, the barns were evaluated as insufficient in terms of barn design, although 48% of they were built after 2000. In 63% of housings examined, stocking density of resting area was below the value of 1 m2/animal and in 59% of the housings, stocking density of courtyard area was below the 2 m2/animal. Feeding length, in 57% of housings has a value of 0.30 m and below. In the region, it will be possible to obtain the desired productivity level by building new barn designs, developed in accordance with the animal behaviors and welfare. Carrying out the necessary works is an important issue in terms of country and regional economy.

Keywords: barn design, goat housing, sheep housing, structural analysis

Procedia PDF Downloads 284
3196 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329
3195 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
3194 Autonomy and Other Variables Related to the Expression of Love among Saudi Couples

Authors: Reshaa Alruwaili

Abstract:

The primary aim of this study was to examine the hypothesis presented by Self Determination theory which suggests that autonomy impacts positively the expression of love. Other hypotheses were also examined which suggest that other variables explain the expression of love, including: dyadic adjustment (dyadic consensus, dyadic satisfaction and dyadic cohesion), couple satisfaction, age, gender, the length of marriage, number of children and attachment styles. The participants were Saudi couples, which provided the opportunity to consider the influence of Saudi culture on the expression of love. A questionnaire was employed to obtain measures of all the relevant variables, including a measure of expression of love that was built from 27 items, constituting verbal, physical and caring features, and a measure of autonomy based on three features: authorship, interest-taking and susceptibility. Data were collected from both members of 34 Saudi couples. Descriptive analysis of both expression of love and autonomy was conducted. Correlation and regression were used to assess the relationships between expression of love and autonomy and other variables. Results indicated that Saudi couples who most often express their love tend to be more than somewhat autonomous. Not much difference was found between husbands and wives in expressing love, although wives were slightly more autonomous than husbands. Expression of love was enhanced by the autonomy of the participants to a greater extent when dyadic satisfaction was controlled, since the latter was negatively correlated with autonomy and had no effect on the expression of love. Basic psychological needs, dyadic consensus and dismissive-avoidant attachment improve the expression of love, while it is decreased by the number of children.

Keywords: autonomy, determination theory, expression of love, dyadic adjustment

Procedia PDF Downloads 232
3193 Eco-Ethology of Bees Visitors on Vicia faba L. var. Major (Fabaceae) in Algeria

Authors: L. Bendifallah, S. Doumandji, K. Louadi, S. Iserbyt, F. Acheuk

Abstract:

Due to their ecological key position and diversity, plant-bee relationships constitute excellent models to understand the processes of food specialisation. The purpose of this study is to define and identify the most important species of bees foraging broadbean flowers, we estimated morphological, phonological and behavioural features. We discuss the results by considering the food specialisation level of the visitor. In the studied populations (Algiers, Algeria), visiting bees belong to four different genus: Apis, Andrena, Eucera and Xylocopa. Eucera is foraging broad beans flowers during months of April, May. The genus Andrena and Xylocopa were found on weeds after the flowering period of beans. The two species have not a preferred type of vegetation compared to Eucera. The main pollinators were generalist bees such as Apis mellifera L. and Xylocopa pubescens Spinola (Apidae), and specialist bees such Eucera numida Lep. (Apidae). The results show that no one of the studied species, neither the specialist, nor the generalist ones, share adaptative morphological or behavioural features that may improve foraging on Vicia faba. However, there is a narrow synchronisation between the daily and yearly phenologies of Eucera numida and those of V. faba. This could be an adaptation of the specialist bee to its host plant. Thus, the food specialisation of Eucera numida, as for most specialist bees, would be more linked to its adapted phenology than to an adapted morphology.

Keywords: Vicia faba, bees, pollinators, Algeria

Procedia PDF Downloads 320
3192 Geometric Morphometric Analysis of Allometric Variation in the Hand Morphology of Adults

Authors: Aleksandr S. Ermolenko

Abstract:

Allometry is an important factor of morphological integration, contributing to the organization of the phenotype and its variability. The allometric change in the shape of the hand is particularly important in primate evolution, as the hand has important taxonomic features. Some of these features are known to parts with the shape, especially the ratio of the lengths of the index and ring fingers (2d: 4d ratio). The hand is a fairly well-studied system in the context of the evolutionary development of complex morphological structures since it consists of various departments (basipodium, metapodium, acropodium) that form a single structure –autopodium. In the present study, we examined the allometric variability of acropodium. We tested the null hypothesis that there would be no difference in allometric variation between the two components. Geometric morphometry based on a procrustation of 16 two-dimensional (2D) landmarks was analyzed using multivariate shape-by-size regressions in samples from 100 people (50 men and 50 women). The results obtained show that men have significantly greater allometric variability for the ring finger (variability in the transverse axis prevails), while women have significantly greater allometric variability for the index finger (variability in the longitudinal axis prevails). The influence of the middle finger on the shape of the hand is typical for both men and women. The influence of the little finger on the shape of the hand, regardless of gender, was not revealed. The results of this study support the hypothesis that allometry contributes to the organization of variation in the human hand.

Keywords: human hand, size and shape, 2d:4d ratio, geometric morphometry

Procedia PDF Downloads 156
3191 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)

Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński

Abstract:

Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.

Keywords: temperament, eye-hand coordination, pilot, SAGI

Procedia PDF Downloads 440
3190 Prospects in Teaching Arabic Grammatical Structures to Non-Arab Learners

Authors: Yahya Toyin Muritala, Nonglaksana Kama, Ahmad Yani

Abstract:

The aim of the paper is to investigate various linguistic techniques in enhancing and facilitating the acquisition of the practical knowledge of Arabic grammatical structuring among non-Arab learners of the standard classical Arabic language in non-Arabic speaking academic settings in the course of the current growth of the internationalism and cultural integration in some higher institutions. As the nature of the project requires standard investigations into the unique principal features of Arabic structurings and implications, the findings of the research work suggest some principles to follow in solving the problems faced by learners while acquiring grammatical aspects of Arabic language. The work also concentrates on the the structural features of the language in terms of inflection/parsing, structural arrangement order, functional particles, morphological formation and conformity etc. Therefore, grammatical aspect of Arabic which has gone through major stages in its early evolution of the classical stages up to the era of stagnation, development and modern stage of revitalization is a main subject matter of the paper as it is globally connected with communication and religion of Islam practiced by millions of Arabs and non-Arabs nowadays. The conclusion of the work shows new findings, through the descriptive and analytical methods, in terms of teaching language for the purpose of effective global communication with focus on methods of second language acquisitions by application.

Keywords: language structure, Arabic grammar, classical Arabic, intercultural communication, non-Arabic speaking environment and prospects

Procedia PDF Downloads 399
3189 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 658
3188 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy

Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Abstract:

The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.

Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education

Procedia PDF Downloads 485
3187 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 81
3186 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
3185 Reversible Cerebral Vasoconstriction Syndrome at Emergency Department

Authors: Taerim Kim, Shin Ahn, Chang Hwan Sohn, Dong Woo Seo, Won Young Kim

Abstract:

Object: Reversible cerebral vasospasm syndrome (RCVS) remains an underrated cause of thunderclap headache which shares similar history of the ‘worst-ever’ headache with subarachnoid hemorrhage (SAH) to the emergency physicians. This study evaluated the clinical manifestations, radiological features, and outcomes of patients with RCVS so that the physicians could raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before having life-threatening complications. Methods: The electric medical records of 18 patients with diagnostic criteria of RCVS at the emergency department (ED) between January 2013 and December 2014 were retrospective reviewed. Results: The mean age was 50.7 years, and 80% were women. Patients with RCVS visit an average of 4.7 physicians before receiving an accurate diagnosis and mean duration of symptom until diagnosis is 9.3 days. All patients except one experienced severe headache, from 8 to 10 pain intensity on a numerical rating scale (NRS). 44% of patients had nausea as an associated symptom, 66% of patients experienced worsening of headache while gagging, leaning forward, defecating, urinating or having sex. The most frequently affected vessels are middle cerebral arteries demonstrating the characteristic diffuse “string of beads” appearance. Four patients had SAH as a complication. Conclusion: Patients with RCVS have a unique set of clinical and imaging features. Emergency physicians should raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before life-threatening complications.

Keywords: headache, thunderclap, subarachnoid haemorrhage, stroke

Procedia PDF Downloads 427
3184 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features

Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis

Abstract:

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.

Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks

Procedia PDF Downloads 207