Search results for: peat swamp forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1004

Search results for: peat swamp forest

374 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 235
373 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Authors: Mukesh Singh Boori, Vít Voženílek

Abstract:

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

Keywords: remote sensing, land use/cover, change trajectories, image classification

Procedia PDF Downloads 404
372 Diversity of Short-Horned Grasshoppers (Orthoptera: Caelifera) from Forested Region of Kolhapur District, Maharashtra, India of Northern Western Ghats

Authors: Sunil M. Gaikwad, Yogesh J. Koli, Gopal A. Raut, Ganesh P. Bhawane

Abstract:

The present investigation was directed to study the diversity of short-horned grasshoppers from a forested area of Kolhapur district, Maharashtra, India, which is spread along the hilly terrain of the Northern Western Ghats. The collection was made during 2013 to 2015, and identified with the help of a reference collection of ZSI, Kolkata, and recent literature and dry preserved. The study resulted in the enumeration of 40 species of short-horned grasshoppers belonging to four families of suborder: Caelifera. The family Acrididae was dominant (27 species) followed by Tetrigidae (eight species), Pyrgomorphidae (four species) and Chorotypidae (one species). The report of 40 species from the forest habitat of the study region highlights the significance of the Western Ghats. Ecologically, short-horned grasshoppers are integral to food chains, being consumed by a wide variety of animals. The observations of the present investigation may prove useful for conservation of the Diversity in Northern Western Ghats.

Keywords: diversity, Kolhapur, northern western Ghats, short-horned grasshoppers

Procedia PDF Downloads 182
371 Arthropods Diversity of the Late Carboniferous Souss Basin, Morocco: Paleoecology and Taphonomy

Authors: Abouchouaib Belahmira, Joerg W. Schneider, Hafid Saber

Abstract:

Continental sediments of the uppermost Carboniferous (late Pennsylvanian) El Menizla and Oued Issene formations of the Souss basin, Southwestern High Atlas Mountains, Morocco have yielded abundant well-preserved arthropods. The latter comprise freshwater and terrestrial elements, were found associated with plants, freshwater jellyfish and pelecypods. Arthropods are ubiquitous and typically restricted to the dominated lacustrine black shale taphofacies. The lithofacies interpretation and its correlation with the taphofacies led to the determination of the original depositional environment that was reconstructed as a fluvial-dominated with braided wide channel system and floodplain lakes to peat local backswamps sub-environments. The late Carboniferous fossiliferous strata have been correlated biostratigraphically with many other Pennsylvanian (Kasimovian/Gzhelian) deposits of North America and Europe on the basis of entomological studies. The faunal elements of the lentic biocoenosis of the Souss basin are depauperate, with the vagile forms slightly diverse than sessile ones. The prevailing groups are small shelly fauna, other habitat guild such as apterygotan Monura insect dasyleptids. The fossils recorded from the Souss basin includes crustaceans, of various sizes (µm- to mm) and morphologies, preservation state ranging from poorly preserved to rarely well-preserved specimens. Their remains sporadically found clustered and preserved as internal or external shell molds or steinkerns often disarticulated specimens. Ostracods as more likely Carbonita, their shells are preserved three-dimensionally. The clam shrimps conchostracans record of the Souss basin are often determined as pseudestherids and the Spinicaudatan leaiids. The moldic preservation is somewhat similar to pelecypods, they are known from internal casts or impressions. Monura insects are characterized by their low diversity, thus, only two species are known Dasyleptus lucasi Brongniart and Dasyleptus noli Rasnitsyn. The terrestrial component consists of pterygotan insects. They are diverse, significantly more frequent throughout the Souss basin fossil localities, numerically dominated by the members of Blattodea (cockroaches). The fossil record includes Blattodea, Protorthoptera, Diaphanopterodea, Ephemeroptera (mayfly) , Calneurodea, Grylloblattodea, Miomoptera and Palaeodictyoptera. Additionally, the composition of the preserved insect is mostly represented by completely isolated forewings, rare membranous hindwings, parts of the body or exceptionally preserved specimens, which may reflect a wide spectrum of taphonomic pathways. The steady increase in taxonomic diversity of fossil sites in the Souss basin, together with the taphonomic interpretation of arthropods assemblages, have contributed to provide a novel insight into the complex terrestrial ecosystem that thrived in this paleotropical key region during the late Pennsylvanian and additionally to understand climate-driven paleobiogeography and paleoecology of late Paleozoic non-marine arthropods.

Keywords: Souss, carboniferous, arthropods, taphonomy, paleoecology.

Procedia PDF Downloads 33
370 The Genetic Diversity and Conservation Status of Natural Populus Nigra Populations in Turkey

Authors: Asiye Ciftci, Zeki Kaya

Abstract:

Populus nigra is one of the most economically and ecologically important forest trees in Turkey, well known for its rapid growth, good ability to vegetative propagation and the extreme uses of its wood. Due to overexploitation, loss of natural distribution area and extreme hybridization and introgression, Populus nigra is one of the most threatened tree species in Turkey and Europe. Using 20 nuclear microsatellite loci, the genetic structure of European black poplar populations along the two largest rivers of Turkey was analyzed. All tested loci were highly polymorphic, displaying 5 to 15 alleles per locus. Observed heterozygosity (overall Ho = 0.79) has been higher than the expected (overall He = 0.58) in each population. Low level of genetic differentiation among populations (FST= 0,03) and excess of heterozygotes for each river were found. Human-mediated dispersal, phenotypic selection, high level of gene flow and extensive circulations of clonal materials may cause those situations. The genetic data obtained from this study could provide the basis for efficient in situ and ex-situ conservation and restoration of species natural populations in its natural habitat as well as having sustainable breeding and poplar plantations in the future.

Keywords: populus, clonal, loci, ex situ

Procedia PDF Downloads 295
369 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping

Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh

Abstract:

Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.

Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A

Procedia PDF Downloads 171
368 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
367 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 41
366 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
365 The Roots of Amazonia’s Droughts and Floods: Complex Interactions of Pacific and Atlantic Sea-Surface Temperatures

Authors: Rosimeire Araújo Silva, Philip Martin Fearnside

Abstract:

Extreme droughts and floods in the Amazon have serious consequences for natural ecosystems and the human population in the region. The frequency of these events has increased in recent years, and projections of climate change predict greater frequency and intensity of these events. Understanding the links between these extreme events and different patterns of sea surface temperature in the Atlantic and Pacific Oceans is essential, both to improve the modeling of climate change and its consequences and to support efforts of adaptation in the region. The relationship between sea temperatures and events in the Amazon is much more complex than is usually assumed in climatic models. Warming and cooling of different parts of the oceans, as well as the interaction between simultaneous temperature changes in different parts of each ocean and between the two oceans, have specific consequences for the Amazon, with effects on precipitation that vary in different parts of the region. Simplistic generalities, such as the association between El Niño events and droughts in the Amazon, do not capture this complexity. We investigated the variability of Sea Surface Temperature (SST) in the Tropical Pacific Ocean during the period 1950-2022, using Empirical Orthogonal Functions (FOE), spectral analysis coherence and wavelet phase. The two were identified as the main modes of variability, which explain about 53,9% and 13,3%, respectively, of the total variance of the data. The spectral and coherence analysis and wavelets phase showed that the first selected mode represents the warming in the central part of the Pacific Ocean (the “Central El Niño”), while the second mode represents warming in the eastern part of the Pacific (the “Eastern El Niño The effects of the 1982-1983 and 1976-1977 El Niño events in the Amazon, although both events were characterized by an increase in sea surface temperatures in the Equatorial Pacific, the impact on rainfall in the Amazon was distinct. In the rainy season, from December to March, the sub-basins of the Japurá, Jutaí, Jatapu, Tapajós, Trombetas and Xingu rivers were the regions that showed the greatest reductions in rainfall associated with El Niño Central (1982-1983), while the sub-basins of the Javari, Purus, Negro and Madeira rivers had the most pronounced reductions in the year of Eastern El Niño (1976-1977). In the transition to the dry season, in April, the greatest reductions were associated with the Eastern El Niño year for the majority of the study region, with the exception only of the sub-basins of the Madeira, Trombetas and Xingu rivers, which had their associated reductions to Central El Niño. In the dry season from July to September, the sub-basins of the Japurá Jutaí Jatapu Javari Trombetas and Madeira rivers were the rivers that showed the greatest reductions in rainfall associated with El Niño Central, while the sub-basins of the Tapajós Purus Negro and Xingu rivers had the most pronounced reductions. In the Eastern El Niño year this season. In this way, it is possible to conclude that the Central (Eastern) El Niño controlled the reductions in soil moisture in the dry (rainy) season for all sub-basins shown in this study. Extreme drought events associated with these meteorological phenomena can lead to a significant increase in the occurrence of forest fires. These fires have a devastating impact on Amazonian vegetation, resulting in the irreparable loss of biodiversity and the release of large amounts of carbon stored in the forest, contributing to the increase in the greenhouse effect and global climate change.

Keywords: sea surface temperature, variability, climate, Amazon

Procedia PDF Downloads 63
364 SWOT Analysis on the Prospects of Carob Use in Human Nutrition: Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: Within the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region, with collaboration of Crete University and Hellenic Mediterranean University, a SWOT (strengths, weaknesses, opportunities, threats) survey was carried out, to evaluate the prospects of carob in human nutrition, in Crete. Results and conclusions: 1). Strengths: There exists a local production of carob for human consumption, based on international reports, and local-product reports. The data on products in the market (over 100 brands of carob food), indicates a sufficiency of carob materials offered in Crete. The variety of carob food products retailed in Crete indicates a strong demand-production-consumption trend. There is a stable number (core) of businesses that invest significantly (Creta carob, Cretan mills, etc.). The great majority of the relevant food stores (bakery, confectionary etc.) do offer carob products. The presence of carob products produced in Crete is strong on the internet (over 20 main professionally designed websites). The promotion of the carob food-products is based on their variety and on a few historical elements connected with the Cretan diet. 2). Weaknesses: The international prices for carob seed affect the sector; the seed had an international price of €20 per kg in 2021-22 and fell to €8 in 2022, causing losses to carob traders. The local producers do not sort the carobs they deliver for processing, causing 30-40% losses of the product in the industry. The occasional high price triggers the collection of degraded raw material; large losses may emerge due to the action of insects. There are many carob trees whose fruits are not collected, e.g. in Apokoronas, Chania. The nutritional and commercial value of the wild carob fruits is very low. Carob trees-production is recorded by Greek statistical services as "other cultures" in combination with prickly pear i.e., creating difficulties in retrieving data. The percentage of carob used for human nutrition, in contrast to animal feeding, is not known. The exact imports of carob are not closely monitored. We have no data on the recycling of carob by-products in Crete. 3). Opportunities: The development of a culture of respect for carob trade may improve professional relations in the sector. Monitoring carob market and connecting production with retailing-industry needs may allow better market-stability. Raw material evaluation procedures may be implemented to maintain carob value-chain. The state agricultural services may be further involved in carob-health protection. The education of farmers on carob cultivation/management, can improve the quality of the product. The selection of local productive varieties, may improve the sustainability of the culture. Connecting the consumption of carob with health-food products, may create added value in the sector. The presence and extent of wild carob threes in Crete, represents, potentially, a target for grafting. 4). Threats: The annual fluctuation of carob yield challenges the programming of local food industry activities. Carob is a forest species also - there is danger of wrong classification of crops as forest areas, where land ownership is not clear.

Keywords: human nutrition, carob food, SWOT analysis, crete, greece

Procedia PDF Downloads 92
363 Value Chain Identification of Beekeeping Business in Indonesia: Case Study of Four Beekeeping Business in West Java

Authors: Dwi Purnomo, Anas Bunyamin, Fajar Susilo, Akbar Anugrah

Abstract:

Beekeeping became a rural economic buffer, especially for people who lived by forest side to diversify their food or sell the honey and bee colony. Aside from the high price of honey and it’s derivative products, there is another revenue stream along beekeeping value chain that could be optimized by the people. There are five of nine honey bee species in the world, exist in Indonesia, such as Apis Cerana, Apis Dorsata, Apis Andreniformis, Apis Koschevnikovi, and Apis Nigrocincta. Indonesian farmer generally developed Apis Cerana and two other honey bees species, like Apis Mellifera and Trigona. This study tried to identify, how beekeeping business practices, challenges and opportunities in four beekeeping business in West Java through the value chain along the business. Data carried out by literature review, interview and focus group discussion with key actors in beekeeping business. There are six revenue stream in beekeeping business in West Java, such as brood hunter, beehives maker, agroforestry, agro-tourism, honey and derivatives products and bee acupuncture. This assesses conclude any criteria that should grasp for developing and sustaining beekeeping business in West Java.

Keywords: beekeeping business, business developing, value chain, West Java

Procedia PDF Downloads 209
362 Biodiversity And Ecosystem Services In Morocco: Current State And Human Development

Authors: Mohammed Taleb

Abstract:

Morocco is characterized by an important genetic diversity represented by a rich and varied flora with 5211 species and subspecies and many natural ecosystems. Biodiversity and natural ecosystems provide the local population with highly diversified services represented by aromatic and medicinal plants, forage plants, melliferous plants, firewood, lumber, mushrooms, etc. Ecosystem services are currently subject to many pressures: overgrazing and deforestation, climate change, including increased drought, urbanization and forest fire. Conscious of the risks that weigh on biodiversity and ecosystem services, Morocco had made an important effort to reverse the tendencies by developing a consistent biodiversity conservation strategy focused on in-situ and ex-situ conservation. This presentation will be focused on the current state of biodiversity and ecosystem services and their role for the human development and their decline under the action of different pressures (grazing, timber harvest, harvesting of medicinal and aromatic plants, charcoal making...) while emphasizing efforts constructed by Morocco to conserve and sustainably manage biodiversity and ecosystem services.

Keywords: morocco, biodiversity, ecosystem services, local population

Procedia PDF Downloads 93
361 Facies Analysis and Depositional Environment of the Late Carboniferous (Stephanian) Souss Basin, Morocco

Authors: Abouchouaib Belahmira, Joerg W. Schneider, Hafid Saber, Sara Akboub

Abstract:

The lithofacies analyzed herein were reported from the interbedded fluvial and lacustrine deposits of the Oued Issene and El Menizla formations. These formations are part of the sedimentary fill of the Carboniferous (Stephanian) submontaneous Souss basin. The latter is situated in the western High Atlas Mountains, south-central Morocco, about 50km east of Agadir. The Souss basin started as a single basin but was separated into sub-basins called Ida Ou Zal and Ida Ou Ziki by sinistral displacement along the west branch of the Tizi N'Test Fault during the end of the Mauritanid phase of the Variscan orogeny in Morocco, after the early Stephanian (Kasimovian) and before the late middle Permian (Capitanian). The studied succession is a monotonous finning-upward sequence of 1800 m thick. It consists of fine-grained sandstone, finely bedded siltstone and thinly laminated claystone, and black shale. Herein we provide a detailed characterization of lithofacies of the upper El Menizla and Oued Issène formations, with a focus on the prevailing overbank to flood plain fine-grained lithofacies. The studied facies are capping the Stephanian alluvial fan basal clast-supported conglomerates that are intercalated bedded coarse-grained sandstones of Ikhourba Formation in the Ou Zal subbasin and Tajgaline Formation in the Ida Ou Ziki subbasin, respectively. Within the fluvial elements, only two main facies have been observed. It comprises channel-fill and channel-bar deposits, mostly occur as lenticular –shape sand bodies or sheet-like sand greenish to gray fine-to medium (Fm), massive internally structureless, or very locally exhibits a medium to large scale trough-cross bedding medium to coarse sandstone (St), observable in relatively thicker bed. These facies are laterally extensive, with a thickness varying from a few to several meters. Finer-grained sediments such as mud can be present as drapes over bedforms. Whilst the fluvial association FA1, the overbank elements are represented by a relatively wide range of 5 facies. This exhibit mostly a cm scale horizontally bedded greenish fine- to medium sand and silt, and mm scale fossiliferous thinly laminated dark gray- black Corganic-rich clays to siltstone associated with black shale. Thus, FA2 includes flood plain fines (Fh, R) associated with the paleosols and back swamp coaly clay facies (C). The floodplain lake element comprises only laminated organic-rich dark gray facies of claystone, black shale, and graded siltstone. Bedsets are dm to several meters thick (typically < 1 m thick). They are intercalated between several m-thick fluvial sandstone, extend over a few meters, and are poorly bioturbated. The lacustrine facies described in this study have been divided into two sub-facies (Fl, B) based on field observations that indicate differing environmental conditions of formation. Thus, the thorough analysis of the lithofacies of the Souss basin units allows us to reconstruct the original environment that was interpreted as a typical fluvial-dominated braided to anastomosing wide distributary channel system and surrounding deep to shallow freshwater floodplain lakes and back swamps.

Keywords: Souss, carboniferous, facies, depositional setting

Procedia PDF Downloads 98
360 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 376
359 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
358 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms

Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama

Abstract:

Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.

Keywords: machine learning, ChatGPT, education, learning, implications

Procedia PDF Downloads 232
357 Pollution of Cadmium in Green Space of Rasht City and Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

The urban green space and environment should be considered to be among the most fundamental elements of the sustainability of natural and human life in the new citizenship. The present research is intended to evaluate the impact of irrigation using urban wastewater of Cadmium (Cd) in the soil and leaves of the pine trees of Rasht in the forest territories of Rasht. For this purpose, following the exact specification of the geographical and topographical attributes of under treatment area, 100 sample trees were implemented randomly –systematically in each compound studied. Approaching the end of growth season, five trees were selected randomly in each of the plats and samples of leaves were collected from the parts near to the end of the crown and the part which was adjacent to the light. At the foot of each of the trees selected, a soil profile was dug and samples of soil were extracted from three depths of 0-20, centimeters. The measurements done in the laboratory showed that the density of nutritious elements of the samples of leaf and soil in the compound irrigated with wastewater .The results of the present research suggest that urban can be used as a source of irrigation whereas muck can be employed in forestation and irrigation with precise and particular supervision and control.

Keywords: irrigation, forestation, urban waste water, pine, wastewater

Procedia PDF Downloads 454
356 Beginner Steps of the First Dendrochronology Lab in Montenegro - Dendrochronology Research in The Bosnian Pine (Pinus heldreichii) Forests

Authors: Jelena Popović, Andrijana Mićanović

Abstract:

Officially, 60% of Montenegrin territory is covered in forests, but they are continually being destroyed by illegal cutting, concession politics and wildfires. Montenegrin Ecologists Society started the first dendrochronology lab in Montenegro, and data collection began in the Summer of 2021. The cores were taken from 3 localities around the peak Lisac on the mt. Prekornica, where biggest P.heldreichii forests existed until recent huge wildfires. This research is the first step towards comprehensive dendrochronology research in Montenegro. It will show how old certain forest stands of Pinus heldreichii on mountain Prekornica are, that were not destroyed in huge wildfires from the recent years. It will also show how do they correlate between each other. Per locality 15 trees were sampled. Electric sanders (150 - 2000) were used for preparation. Cores were scanned, then measured in CooRecorder. Analysis is done in Cofecha. Process will be repeated with Lintab 6 and TSAP (Time Series Analysis and Presentation for Dendrochronology and Related Applications) - Win Scientific software by Rinntech. Since this is the first dendrochronology research entirely done in Montenegro it is a foundation for the dendroclimatology research. Besides, it’ll contribute to the understanding of the life of these forests in this part of its areal, and in designing good management practices.

Keywords: dendrochronology, bosnian pine, pinus heldreichii, montenegro, forests

Procedia PDF Downloads 96
355 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
354 Role of Community Forestry to Address Climate Change in Nepal

Authors: Laxmi Prasad Bhattarai

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: community forestry, climate change, global warming, adaptation, Nepal

Procedia PDF Downloads 305
353 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents

Authors: Shahid-ul-Islam, Faqeer Mohammad

Abstract:

The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.

Keywords: annatto, antimicrobial agents, natural dyes, green textiles

Procedia PDF Downloads 318
352 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 507
351 Restoring, Revitalizing and Recovering Brazilian Rivers: Application of the Concept to Small Basins in the City of São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

Watercourses in Brazilian urban areas are constantly being degraded due to the unplanned use of the urban space; however, due to the different contexts of land use and occupation in the river watersheds, different intervention strategies are required to requalify them. When it comes to requalifying watercourses, we can list three main techniques to fulfill this purpose: restoration, revitalization and recovery; each one being indicated for specific contexts of land use and occupation in the basin. In this study, it was demonstrated that the application of these three techniques to three small basins in São Paulo city, listing the aspects involved in each of the contexts and techniques of requalification. For a protected watercourse within a forest park, renaturalization was proposed, where the watercourse is preserved in a state closer to the natural one. For a watercourse in an urban context that still preserves open spaces for its maintenance as a landscape element, an intervention was proposed following the principles of revitalization, integrating the watercourse with the landscape and the population. In the case of a watercourse in a harder context, only recovery was proposed, since the watercourse is found under the road system, which makes it difficult to integrate it into the landscape.

Keywords: sustainable drainage, river restoration, river revitalization, river recovery

Procedia PDF Downloads 155
350 Application of Proper Foundation in Building Construction

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.

Keywords: foundation, application, stability, aesthetics

Procedia PDF Downloads 73
349 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
348 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand

Authors: Yosiya Chanta, Jantrararuk Tovaranont

Abstract:

Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.

Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change

Procedia PDF Downloads 98
347 The Role of Community Forestry to Combat Climate Change Impacts in Nepal

Authors: Ravi Kumar Pandit

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is growing a global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore the local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: climate change, community forestry, global warming, adaptation in Nepal

Procedia PDF Downloads 254
346 Ecosystem Post-Wildfires Effects of Thasos Island

Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes

Abstract:

Fires are one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperature regimes results on the increased levels of the intensity, frequency and the spread of fires inducing obstacles for the natural regeneration. Thasos Island is one of the Greek islands that have experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense flooding events. That also resulted to serious economic problems to the local communities and the ability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on the hydrology and soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.

Keywords: erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires

Procedia PDF Downloads 325
345 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73