Search results for: image correlation
5890 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1235889 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3485888 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater
Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu
Abstract:
Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters
Procedia PDF Downloads 1385887 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 4325886 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching
Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran
Abstract:
GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm
Procedia PDF Downloads 1315885 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review
Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari
Abstract:
Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.Keywords: environmental phenomena, change detection, monitor, techniques
Procedia PDF Downloads 2745884 The Image of Suan Sunandha Rajabhat University in Accordance with Graduates' Perceptions on the Graduation Ceremony Day
Authors: Waraphorn Sribuakaew, Chutikarn Sriviboon, Rosjana Chandhasa
Abstract:
The purpose of this research is to study the satisfaction level of graduates and factors that affect the image of Suan Sunandha Rajabhat University based on the perceptions of graduates on the graduation ceremony day. By studying the satisfaction of graduates, the image of Suan Sunandha Rajabhat University according to the graduates' perceptions and the loyalty to the university (in the aspects of intention to continue studying at a higher level, intention to recommend the university to a friend), the sample group used in this study was 1,000 graduates of Suan Sunandha Rajabhat University who participated on the 2019 graduation ceremony day. A questionnaire was utilized as a tool for data collection. By the use of computing software, the statistics used for data analysis were frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and multiple regression analysis. Most of the respondents were graduates with a bachelor's degree, followed by graduates with a master's degree and PhD graduates, respectively. Major participants graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. The graduates were satisfied on the ceremony day as a whole and rated each aspect at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation ceremony personnel and staff, venue, and facilities. On the perception of the graduates, the image of Suan Sunandha Rajabhat University was at a good level, while loyalty to the university was at a very high level. The intention of recommendation to others was at the highest level, followed by the intention to pursue further education at a very high level. The graduates graduating from different faculties have different levels of satisfaction on the graduation day with statistical significance at the level of 0.05. The image of Suan Sunandha Rajabhat University affected the satisfaction of graduates with statistical significance at the level of 0.01. The satisfactory level of graduates on the graduation ceremony day influenced the level of loyalty to the university with statistical significance at the level of 0.05.Keywords: university image, loyalty to the university, intention to study higher education, intention to recommend the university to others, graduates' satisfaction
Procedia PDF Downloads 1325883 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 955882 Evaluation of Sugarcane (Saccharum officinarum L.) Genotypes, in modern method of Agriculture, using correlation and path coefficient Analyses
Authors: T. S. Bubuche, L. Abubakar, N.D. Ibrahim, A. A. Aliero, H. M. Sama, B. S. Haliru
Abstract:
A two-year study was conducted at the Fadama farm of Usmanu Danfodiyo University Sokoto, Nigeria. Correlations and path coefficients analysis were used to determine the interrelationship and importance of various characters as components of yield in sugarcane during 20011-012 and 2012-013 growing seasons. Fourteen sugarcane hybrids and a local check were evaluated. The experiment was laid out in a randomized complete block design (RCBD) and replicated three times. Significant and positive correlation were recorded between total cane weight/ha and single stalk weight, between single stalk weight and final brix and between stalk girth and stalk length while final brix and number of milliable cane/ha recorded no significant correlation. Traits that had high direct contribution to the final yield were number of stalk/stool, number of milliable cane/ha, single stalk weight and brix content while high indirect positive contributions were observed in growth habit, number of internode per stalk and stalk length..Keywords: correlation, path analysis, sugarcane, yield components
Procedia PDF Downloads 2515881 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1365880 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1435879 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities
Authors: Nacer Hamza
Abstract:
Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.Keywords: norms, radon concentration, produced water, heavy metals
Procedia PDF Downloads 1475878 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means
Procedia PDF Downloads 2915877 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5035876 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 4975875 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. RamaKrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench
Procedia PDF Downloads 4685874 The Mediation Role of Loneliness in the Relationship between Interpersonal Trust and Empathy
Authors: Ghazal Doostmohammadi, Susan Rahimzadeh
Abstract:
Aim: This research aimed to investigate the relationship between empathy and interpersonal trust and recognize the mediating role of loneliness between them in both genders. Methods: With a correlational descriptive design, 192 university students (130 female and 62 male) responded to the questionnaires on “empathy quotient,” “loneliness,” and “interpersonal trust” tests. These tests were designed and validated by experts in the field. Data were analysed using Pearson correlation and path analysis, which is a statistical technique that uses standard linear regression equations to determine the degree of conformity of a theoretical causal model with reality. Results: The data analysis showed that there was no significant correlation between interpersonal trust, both with loneliness (t=0.169) and empathy (t=0.186), while there was a significant negative correlation (t=0.359) between empathy and loneliness. This means that there is an inverse correlation between empathy and loneliness. The path analysis confirmed the hypothesis of the research about the mediating role of loneliness between empathy and interpersonal trust. But gender did not play a role in this relationship. Conclusion: As an outcome, clinical professionals and education trainers should pay more attention to interpersonal trust as a basic need and try to recreate and shape it to prevent people's social breakdown, and on the other hand, self-disclosure training (especially in Men), expression of feelings and courage should be given double importance to prevent the consequences of loneliness.Keywords: empathy, loneliness, interpersonal trust, gender
Procedia PDF Downloads 845873 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 4825872 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 1435871 The Influence of Destination Image on Tourists' Experience at Osun Osogbo World Heritage Site
Authors: Bola Adeleke, Kayode Ogunsusi
Abstract:
Heritage sites have evolved to preserve culture and heritage and also to educate and entertain tourists. Tourist travel decisions and behavior are influenced by destination image and value of the experience of tourists. Perceived value is one of the important tools for securing a competitive edge in tourism destinations. The model of Ritchie and Crouch distinguished 36 attributes of competitiveness which are classified into five factors which are quality of experience, touristic attractiveness, environment and infrastructure, entertainment/outdoor activities and cultural traditions. The study extended this model with a different grouping of the determinants of destination competitiveness. The theoretical framework used for this study assumes that apart from attractions already situated in the grove, satisfaction with destination common service, and entertainment and events, can all be used in creating a positive image for/and in attracting customers (destination selection) to visit Osun Sacred Osogbo Grove during and after annual celebrations. All these will impact positively on travel experience of customers as well as their spiritual fulfillment. Destination image has a direct impact on tourists’ satisfaction which consequently impacts on tourists’ likely future behavior on whether to revisit a cultural destination or not. The study investigated the variables responsible for destination image competitiveness of the Heritage Site; assessed the factors enhancing the destination image; and evaluated the perceived value realized by tourists from their cultural experience at the grove. A complete enumeration of tourists above 18 years of age who visited the Heritage Site within the month of March and April 2017 was taken. 240 respondents, therefore, were used for the study. The structured questionnaire with 5 Likert scales was administered. Five factors comprising 63 variables were used to determine the destination image competitiveness through principal component analysis, while multiple regressions were used to evaluate perceived value of tourists at the grove. Results revealed that 11 out of the 12 variables determining the destination image competitiveness were significant in attracting tourists to the grove. From the R-value, all factors predicted tourists’ value of experience strongly (R= 0.936). The percentage variance of customer value was explained by 87.70% of the variance of destination common service, entertainment and event satisfaction, travel environment satisfaction and spiritual satisfaction, with F-value being significant at 0.00. Factors with high alpha value contributed greatly to adding value to enhancing destination and tourists’ experience. 11 variables positively predicted tourist value with significance. Managers of Osun World Heritage Site should improve on variables critical to adding values to tourists’ experience.Keywords: competitiveness, destination image, Osun Osogbo world heritage site, tourists
Procedia PDF Downloads 1875870 Relationship Between Pain Intensity at the Time of the Hamstring Muscle Injury and Hamstring Muscle Lesion Volume Measured by Magnetic Resonance Imaging
Authors: Grange Sylvain, Plancher Ronan, Reurink Guustav, Croisille Pierre, Edouard Pascal
Abstract:
The primary objective of this study was to analyze the potential correlation between the pain experienced at the time of a hamstring muscle injury and the volume of the lesion measured on MRI. The secondary objectives were to analyze a correlation between this pain and the lesion grade as well as the affected hamstring muscle. We performed a retrospective analysis of the data collected in a prospective, multicenter, non-interventional cohort study (HAMMER). Patients with suspected hamstring muscle injury had an MRI after the injury and at the same time were evaluated for their pain intensity experienced at the time of the injury with a Numerical Pain Rating Scale (NPRS) from 0 to 10. A total of 61 patients were included in the present analysis. MRIs were performed in an average of less than 8 days. There was a significant correlation between pain and the injury volume (r=0.287; p=0.025). There was no significant correlation between the pain and the lesion grade (p>0.05), nor between the pain and affected hamstring muscle (p>0.05). Pain at the time of injury appeared to be correlated with the volume of muscle affected. These results confirm the value of a clinical approach in the initial evaluation of hamstring injuries to better select patients eligible for further imaging.Keywords: hamstring muscle injury, MRI, volume lesion, pain
Procedia PDF Downloads 985869 Developing a Multidimensional Adjustment Scale
Authors: Nadereh Sohrabi Shegefti, Siamak Samani
Abstract:
Level of adjustment is the first index to check mental health. The aim of this study was developing a valid and reliable Multidimensional Adjustment Scale (MAS). The sample consisted of 150 college students. Multidimensional adjustment scale and Depression, Anxiety, and stress scale (DASS) were used in this study. Principle factor analysis, Pearson correlation coefficient, and Cornbach's Alpha were used to check the validity and reliability of the MAS. Principle component factor analysis showed a 5 factor solution for the MAS. Alpha coefficients for the MAS sub scales were ranged between .69 to .83. Test-retest reliability for MAS was .88 and the mean of sub scales- total score correlation was .88. All these indexes revealed an acceptable reliability and validity for the MAS. The MAS is a short assessment instrument with good acceptable psychometric properties to use in clinical filed.Keywords: psychological adjustment, psychometric properties, validity, Pearson correlation
Procedia PDF Downloads 6345868 Novel Algorithm for Restoration of Retina Images
Authors: P. Subbuthai, S. Muruganand
Abstract:
Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates
Procedia PDF Downloads 3425867 The Aspect of Urban Inequality after Urban Redevelopment Projects
Authors: Sungik Kang, Ja-Hoon Koo
Abstract:
Globally, urban environments have become unequal, and cities have been segmented by income class. It is predicted that urban inequality has arisen by urban redevelopment and reconstruction projects that improve the urban environment and innovate cities. This study aims to analyze the occurrence and characteristics of urban inequality by using the housing price and sale price and demonstrating the correlation with the urban redevelopment project. This study measures 14 years of urban inequality index for 25 autonomous districts in Seoul and analyzes the correlation between urban inequality with urban redevelopment projects. As a conclusion of this study, first, the urban inequality index of Seoul has been continuously rising since 2015. Trends from 2006 to 2019 have been in U-curved shape in between 2015. In 2019, Seoul's urban inequality index was 0.420, a level similar to that of the 2007 financial crisis. Second, the correlation between urban redevelopment and urban inequality was not statistically significant. Therefore, we judged that urban redevelopment's scale or project structure has nothing with urban inequality. Third, while district designation of urban reconstruction temporarily alleviates urban inequality, the completion of the project increases urban inequality. When designating a district, urban inequality is likely to decrease due to decreased outdated housing transactions. However, the correlation with urban inequality increases as expensive houses has been placed after project completion.Keywords: urban inequality, urban redevelopment projects, urban reconstruction projects, housing price inequality, panel analysis
Procedia PDF Downloads 2065866 Impact of Ownership Structure on Financial Performance of Listed Industrial Goods Firms in Nigeria
Authors: Muhammad Shehu Garba
Abstract:
The financial statements of the firms between the periods of 2013 and 2022 were collected using the secondary method of data collection, and the study aims to investigate the effect of ownership structure on the financial performance of listed industrial goods companies in Nigeria. 10 firms were used as the study's sample size. The study used panel data variables of the study. The ownership structure is measured with managerial ownership, institutional ownership and foreign ownership, while financial performance is measured with return on asset and return on equity; the study made use of control variables leverage and firm size. The result shows a multivariate relationship that exists between variables of the study, which shows ROA has a positive correlation with ROE (0.4053), MO (0.2001), and FS (0.3048). It has a negative correlation with FO (-0.1933), IO (-0.0919), and LEV (-0.3367). ROE has a positive correlation with ROA (0.4053), MO (0.2001), and FS (0.2640). It has a negative correlation with FO (-0.1864), IO (-0.1847), and LEV (-0.0319). It is recommended that firms should focus on increasing their ROA. Firms should also consider increasing their MO, as this can help to align the interests of managers and shareholders. Firms should also be aware of the potential impact of FO and IO on their ROA.Keywords: firm size, ownership structure, financial performance, leaverage
Procedia PDF Downloads 665865 Estimation of Stress Intensity Factors from near Crack Tip Field
Authors: Zhuang He, Andrei Kotousov
Abstract:
All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.Keywords: digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement
Procedia PDF Downloads 6155864 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1535863 Bone Mineral Density in Long-Living Patients with Coronary Artery Disease
Authors: Svetlana V. Topolyanskaya, Tatyana A. Eliseeva, Olga N. Vakulenko, Leonid I. Dvoretski
Abstract:
Introduction: Limited data are available on osteoporosis in centenarians. Therefore, we evaluated bone mineral density in long-living patients with coronary artery disease (CAD). Methods: 202 patients hospitalized with CAD were enrolled in this cross-sectional study. The patients' age ranged from 90 to 101 years. The majority of study participants (64.4%) were women. The main exclusion criteria were any disease or medication that can lead to secondary osteoporosis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results: Normal lumbar spine BMD was observed in 40.9%, osteoporosis – in 26.9%, osteopenia – in 32.2% of patients. Normal proximal femur BMD values were observed in 21.3%, osteoporosis – in 39.9%, and osteopenia – in 38.8% of patients. Normal femoral neck BMD was registered only in 10.4% of patients, osteoporosis was observed in 60.4%, osteopenia in 29.2%. Significant positive correlation was found between all BMD values and body mass index of patients (p < 0.001). Positive correlation was registered between BMD values and serum uric acid (p=0.0005). The likelihood of normal BMD values with hyperuricemia increased 3.8 times, compared to patients with normal uric acid, who often have osteoporosis (Odds Ratio=3.84; p = 0.009). Positive correlation was registered between all BMD values and body mass index (p < 0.001). Positive correlation between triglycerides levels and T-score (p=0.02), but negative correlation between BMD and HDL-cholesterol (p=0.02) were revealed. Negative correlation between frailty severity and BMD values (p=0.01) was found. Positive correlation between BMD values and functional abilities of patients assessed using Barthel index (r=0,44; p=0,000002) and IADL scale (r=0,36; p=0,00008) was registered. Fractures in history were observed in 27.6% of patients. Conclusions: The study results indicate some features of BMD in long-livers. In the study group, significant relationships were found between bone mineral density on the one hand, and patients' functional abilities on the other. It is advisable to further study the state of bone tissue in long-livers involving a large sample of patients.Keywords: osteoporosis, bone mineral density, centenarians, coronary artery disease
Procedia PDF Downloads 1445862 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 675861 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher
Authors: M. F. Haroun, T. A. Gulliver
Abstract:
In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA
Procedia PDF Downloads 506