Search results for: fresh groundwater lens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2025

Search results for: fresh groundwater lens

1395 Effect of Tree Age on Fruit Quality of Different Cultivars of Sweet Orange

Authors: Muhammad Imran, Faheem Khadija, Zahoor Hussain, Raheel Anwar, M. Nawaz Khan, M. Raza Salik

Abstract:

Amongst citrus species, sweet orange (Citrus sinensis L. Osbeck) occupies a dominant position in the orange producing countries in the world. Sweet orange is widely consumed both as fresh fruit as well as juice and its global demand is attributed due to higher vitamin C and antioxidants. Fruit quality is most important for the external appearance and marketability of sweet orange fruit, especially for fresh consumption. There are so many factors affecting fruit quality, tree age is the most important one, but remains unexplored so far. The present study, we investigated the role of tree age on fruit quality of different cultivars of sweet oranges. The difference between fruit quality of 5-year young and 15-year old trees was discussed in the current study. In case of fruit weight, maximum fruit weight (238g) was recorded in 15-year old sweet orange cv. Sallustiana cultivar while minimum fruit weight (142g) was recorded in 5-year young tree of Succari sweet orange fruit. The results of the fruit diameter showed that the maximum fruit diameter (77.142mm) was recorded in 15-year old Sallustiana orange but the minimum fruit diameter (66.046mm) was observed in 5-year young tree of sweet orange cv. Succari. The minimum value of rind thickness (4.142mm) was noted in 15-year old tree of cv. Red blood. On the other hand maximum value of rind thickness was observed in 5-year young tree of cv. Sallustiana. The data regarding total soluble solids (TSS), acidity (TA), TSS/TA, juice content, rind, flavedo thickness, pH and fruit diameter have also been discussed.

Keywords: age, cultivars, fruit, quality, sweet orange (Citrus Sinensis L. Osbeck)

Procedia PDF Downloads 225
1394 Intersectional Bullying, LGBT Youth and the Construction of Power

Authors: Elle Hilke Dominski

Abstract:

This paper explores the impact of intersectional bullying of lesbian, gay, bisexual, transgender (LGBT) youth from a multi-layered experience perspective within bullying incidents at school. Present inclusionary measures at school may not be designed as a continuous process of finding better methods for responding to diversity, rather remain ‘fixed’ as singular solutions applied universally. This paper argues recognizing education through a lens of inclusion begins to realize most educational systems are poorly equipped to handle diversity.

Keywords: bullying, education, intersectional bullying, LGBT

Procedia PDF Downloads 213
1393 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 110
1392 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 126
1391 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 90
1390 Weak Electric Fields Enhance Growth and Nutritional Quality of Kale

Authors: So-Ra Lee, Myung-Min Oh

Abstract:

Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240).

Keywords: electroculture, electric signal, faraday cage, electric field

Procedia PDF Downloads 286
1389 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 16
1388 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date

Abstract:

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Keywords: combined effect, delay addition, heat stimulation, flow of mortar

Procedia PDF Downloads 197
1387 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use

Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat

Abstract:

The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.

Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields

Procedia PDF Downloads 130
1386 Finding Elves in Play Based Learning

Authors: Chloe L. Southern

Abstract:

If play is deemed to fulfill children’s social, emotional, and physical domains, as well as satisfy their natural curiosity and promote self-reflexivity, it is difficult to understand why play is not prioritized to the same extent for older children. This paper explores and discusses the importance of play-based learning as well as the preliminary implications beyond the realm of kindergarten. To further extend the inquiry, discussions pertaining to play-based learning are looked at through the lens of relevant methodologies and theories. Different education systems are looked at in certain areas of the world that lead to curiosities not only towards their play-based practices and curriculum but what ideologies they have that set them apart.

Keywords: 21ˢᵗ century learning, play-based learning, student-centered learning, transformative learning

Procedia PDF Downloads 71
1385 An Integrated Assessment (IA) of Water Resources in the Speightstown Catchment, Barbados Using a GIS-Based Decision Support System

Authors: Anuradha Maharaj, Adrian Cashman

Abstract:

The cross-cutting nature of water as a resource translates into the need for a better understanding of its movement, storage and loss at all points in the hydro-socioeconomic cycle. An integrated approach to addressing the issue of sustainability means quantitatively understanding: the linkages within this cycle, the role of water managers in resource allocation, and the critical factors influencing its scarcity. The Water Evaluation and Planning Tool (WEAP) is an integrative model that combines the catchment-scale hydrologic processes with a water management model, driven by environmental requirements and socioeconomic demands. The concept of demand priorities is included to represent the areas of greatest use within a given catchment. Located on Barbados’ West Coast, Speightstown and the surrounding areas encompass a well-developed tourist, residential and agricultural area. The main water resource for this area, and the rest of the island, is that of groundwater. The availability of groundwater in Barbados may be adversely affected by the projected changes in climate, such as reduced wet season rainfall. Economic development and changing sector priorities together with climate related changes have the potential to affect water resource abundance and by extension the allocation of resources for example in the Speightstown area. In order to investigate the potential impacts on the Speightstown area specifically, a WEAP Model of the study area was developed to estimate the present available water (baseline reference scenario 2000-2010). From this baseline scenario, it is envisioned that an exploration into projected changes in availability in the near term (2035-2045) and medium/long term (2065-2075) time frames will be undertaken. The generated estimations can assist water managers to better evaluate the status of and identify trends in water use and formulate adaptation measures to offset future deficits.

Keywords: water evaluation and planning system (WEAP), water availability, demand and supply, water allocation

Procedia PDF Downloads 345
1384 Deficit Drip Irrigation in Organic Cultivation of Aromatic Plant

Authors: Vasileios A. Giouvanis, Christos D. Papanikolaou, Dimitrios S. Dimakas, Maria A. Sakellariou-Makrantonaki

Abstract:

In countries with limited water resources, where the irrigation demands are higher than the 70% of the total water use, the demand for fresh water increases while the quality of this natural resource is downgraded. The aromatic and pharmaceutical plants hold a high position in the culture of the most civilizations through the centuries. The ‘Mountain Tea,’ species of the Greek flora, is part of a series of aromatic plants and herbs that are famous for their pharmaceutical properties as well as their byproducts and their essential oils. The aim of this research was to study the effects of full and deficit irrigation on the growing and productive characteristics of organically cultivated ‘Mountain Tea’ (Sideritis raeseri). The research took place at the University of Thessaly farm in Velestino, Magnesia - Central Greece, during the year 2017, which was the third growing season. The experiment consisted of three treatments in three replications. The experimental design was a fully randomized complete block. Surface drip irrigation was used to irrigate the experimental plots. In the first treatment, the 75% (deficit irrigation) of the daily water needs was applied. In the second treatment, the 100% (full irrigation) of the daily water needs was applied. The third treatment was not irrigated (rainfed). The crop water needs were calculated according to the daily measured evapotranspiration (ETc) using the Penman-Monteith method (FAO 56). The plants’ height, fresh and dry biomass production were measured. The results showed that only the irrigated ‘Mountain Tea’ can be cultivated at low altitude areas with satisfactory results. Moreover, there are no statistically significant differences (P < 0.05) at the growing and productive characteristics between full and deficit irrigation treatments, which proves that by deficit irrigation, an important amount of irrigation water can be saved.

Keywords: mountain tea, surface drip irrigation, deficit irrigation, water saving

Procedia PDF Downloads 161
1383 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 79
1382 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 243
1381 Rainwater Harvesting is an Effective Tool for City’s Storm Water Management and People’s Willingness to Install Rainwater Harvesting System in Buildings: A Case Study in Kazipara, Dhaka, Bangladesh

Authors: M. Abu Hanif, Anika Tabassum, Fuad Hasan Ovi, Ishrat Islam

Abstract:

Water is essential for life. Enormous quantities of water are cycled each year through hydrologic cycle but only a fraction of circulated water is available each year for human use. Dhaka, the capital of Bangladesh is the 19th mega city in the world with a population of over 14 million (World City Information, 2011). As a result the growth of urban population is increasing rapidly; the city is not able to manage with altering situations due to resource limitations and management capacity. Water crisis has become an acute problem faced by the inhabitants of Dhaka city. It is found that total water demand in Dhaka city is 2,240 million liter per day (MLD) whereas supply is 2,150 (MLD). According to Dhaka Water Supply and Sewerage Authority about 87 percent of this supply comes from groundwater resources and rest 13 percent from surface water. According to Dhaka Water Supply and Sewerage Authority it has been found that the current groundwater depletion rate is 3.52 meter per year. Such a fast depletion of the water table will result in intrusion of southern saline water into the groundwater reservoir, depriving this mega city of pure drinking water. This study mainly focus on the potential of Rainwater Harvesting System(RWHS) in Kazipara area of Dhaka city, determine the perception level of local people in installation of rainwater harvesting system in their building and identify the factors regarding willingness of owner in installing rainwater harvesting system. As most of the residential area of Dhaka city is unplanned with small plots, Kazipara area has been chosen as study area which depicts similar characteristics. In this study only roof top area is considered as catchment area and potential of rainwater harvesting has been calculated. From the calculation it is found that harvested rainwater can serve the 66% of demand of water for toilet flushing and cleaning purposes for the people of Kazipara. It is also observed that if only rooftop rainwater harvesting applied to all the structures of the study area then two third of surface runoff would be reduced than present surface runoff. In determining the perception of local people only owners of the buildings were. surveyed. From the questionnaire survey it is found that around 75% people have no idea about the rainwater harvesting system. About 83% people are not willing to install rainwater harvesting system in their dwelling. The reasons behind the unwillingness are high cost of installation, inadequate space, ignorance about the system, etc. Among 16% of the willing respondents who are interested in installing RWHS system, it was found that higher income, bigger size of buildings are important factors in willingness of installing rainwater harvesting system. Majority of the respondents demanded for both technical and economical support to install the system in their buildings. Government of Bangladesh has taken some initiatives to promote rainwater harvesting in urban areas. It is very much necessary to incorporate rainwater harvesting device and artificial recharge system in every building of Dhaka city to make Dhaka city self sufficient in water supply management and to solve water crisis problem of megacity like as Dhaka city.

Keywords: rainwater harvesting, water table, willingness, storm water

Procedia PDF Downloads 236
1380 Evaluation of the Quality Water Irrigation in Region of Lioua (Biskra), Algeria

Authors: F. Hiouani, M. Henouda, A. Masmoudi, M. Rechachi

Abstract:

The objective of this study was to evaluate the quality of irrigation water of some underground water resources in the region of Lioua (Biskra, Algéria). Analysis of cations (Ca++, Mg++, Na+, K+), anions (Cl-, SO4--, CO3--, HCO3-, NO3-), pH and electrical conductivity (EC) of ten water samples taken during March 2015. The resulted showed that water samples are designated salty and very salty. On the other hand, average SAR values show that there is no alkalinity risk of soil. According to Riverside diagram water samples are grouped into five classes (C3-S1, C4-S1, C4-S3, C5-S2 and C5-S3).

Keywords: groundwater, irrigation, quality, lioua biskra

Procedia PDF Downloads 305
1379 Effect of Fresh Concrete Curing Methods on Its Compressive Strength

Authors: Xianghe Dai, Dennis Lam, Therese Sheehan, Naveed Rehman, Jie Yang

Abstract:

Concrete is one of the most used construction materials that may be made onsite as fresh concrete and then placed in formwork to produce the desired shapes of structures. It has been recognized that the raw materials and mix proportion of concrete dominate the mechanical characteristics of hardened concrete, and the curing method and environment applied to the concrete in early stages of hardening will significantly influence the concrete properties, such as compressive strength, durability, permeability etc. In construction practice, there are various curing methods to maintain the presence of mixing water throughout the early stages of concrete hardening. They are also beneficial to concrete in hot weather conditions as they provide cooling and prevent the evaporation of water. Such methods include ponding or immersion, spraying or fogging, saturated wet covering etc. Also there are various curing methods that may be implemented to decrease the level of water lost which belongs to the concrete surface, such as putting a layer of impervious paper, plastic sheeting or membrane on the concrete to cover it. In the concrete material laboratory, accelerated strength gain methods supply the concrete with heat and additional moisture by applying live steam, coils that are subject to heating or pads that have been warmed electrically. Currently when determining the mechanical parameters of a concrete, the concrete is usually sampled from fresh concrete on site and then cured and tested in laboratories where standardized curing procedures are adopted. However, in engineering practice, curing procedures in the construction sites after the placing of concrete might be very different from the laboratory criteria, and this includes some standard curing procedures adopted in the laboratory that can’t be applied on site. Sometimes the contractor compromises the curing methods in order to reduce construction costs etc. Obviously the difference between curing procedures adopted in the laboratory and those used on construction sites might over- or under-estimate the real concrete quality. This paper presents the effect of three typical curing methods (air curing, water immersion curing, plastic film curing) and of maintaining concrete in steel moulds on the compressive strength development of normal concrete. In this study, Portland cement with 30% fly ash was used and different curing periods, 7 days, 28 days and 60 days were applied. It was found that the highest compressive strength was observed from concrete samples to which 7-day water immersion curing was applied and from samples maintained in steel moulds up to the testing date. The research results implied that concrete used as infill in steel tubular members might develop a higher strength than predicted by design assumptions based on air curing methods. Wrapping concrete with plastic film as a curing method might delay the concrete strength development in the early stages. Water immersion curing for 7 days might significantly increase the concrete compressive strength.

Keywords: compressive strength, air curing, water immersion curing, plastic film curing, maintaining in steel mould, comparison

Procedia PDF Downloads 289
1378 Development of Cost-Effective Protocol for Preparation of Dehydrated Paneer (Indian Cottage Cheese) Using Freeze Drying

Authors: Sadhana Sharma, P. K. Nema, Siddhartha Singha

Abstract:

Paneer or Indian cottage cheese is an acid and heat coagulated milk product, highly perishable because of high moisture (58-60 %). Typically paneer is marble to light creamy white in appearance. A good paneer should have cohesive body with slight sponginess or springiness. The texture must be smooth and velvety with close-knit compactness. It should have pleasing mild acidic, slightly sweet and nutty flavour. Consumers today demand simple to prepare, convenient, healthy and natural foods. Dehydrated paneer finds numerous ways to be used. It can be used in curry preparation similar to paneer-in-curry, a delicacy in Indian cuisine. It may be added to granola/ trail mix yielding a high energy snack. If grounded to a powder, it may be used as a cheesy spice mix or used as popcorn seasoning. Dried paneer powder may be added to pizza dough or to a white sauce to turn it into a paneer sauce. Drying of such food hydrogels by conventional methods is associated with several undesirable characteristics including case hardening, longer drying time, poor rehydration ability and fat loss during drying. The present study focuses on developing cost-effective protocol for freeze-drying of paneer. The dehydrated product would be shelf-stable and can be rehydrated to its original state having flavor and texture comparable to the fresh form. Moreover, the final product after rehydration would be more fresh and softer than its frozen counterparts. The developed product would be shelf-stable at room temperature without any addition of preservatives.

Keywords: color, freeze-drying, paneer, texture

Procedia PDF Downloads 154
1377 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy

Abstract:

This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.

Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation

Procedia PDF Downloads 77
1376 Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash

Authors: Abdul Haseeb Wani, Shruti Sharma, Rafat Siddique

Abstract:

Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix.

Keywords: bagasse ash, compressive strength, self-compacting concrete, splitting tensile strength

Procedia PDF Downloads 349
1375 Smashed Mirror: Immigrant Students’ Constructions of South Africa

Authors: Vandeyar Saloshna, Vandeyar Hirusellvan

Abstract:

The image of post-apartheid South African Society that is reflected in the social mirror of the world is largely one of hope, faith, and aspiration. But is this reality? Utilizing social constructivism, case study approach and narrative inquiry, this chapter set out to explore the reflection of South African students from the lens of immigrant students. The picture that unfolds is troublesome in its negativity. In this chapter, we establish in detail what this picture is about and what implications it holds for South African Society.

Keywords: immigrant students, social mirror, xenophobia, identity formation, makwerekwere, expectations

Procedia PDF Downloads 444
1374 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa

Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel

Abstract:

Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.

Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group

Procedia PDF Downloads 104
1373 Closing the Front Door of Child Protection: Rethinking Mandated Reporting

Authors: Miriam Itzkowitz, Katie Olson

Abstract:

Through an interdisciplinary and trauma-responsive lens, this article reviews the legal and social history of mandated reporting laws and family separation, examines the ethical conundrum of mandated reporting as it relates to evidence-based practice, and discusses alternatives to mandated reporting as a primary prevention strategy. Using existing and emerging data, the authors argue that mandated reporting as a universal strategy contributes to racial disproportionality in the child welfare system and that anti-racist practices should begin with an examination of our reliance on mandated reporting.

Keywords: child welfare, education, mandated reporting, racial disproportionality, trauma

Procedia PDF Downloads 347
1372 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 403
1371 Analysis of Local Food Sources in Ethiopia

Authors: Bereket Amare Mulu

Abstract:

Ethiopia is one of the countries that consists of a huge variety of botanical resources as compared to the world. The agroclimatic is suitable for a variety of plants to grow effectively throughout the year. Sources of food plants are basic items for people in the world. Production of food items is a prior activity and needs more resources and attention to produce a huge amount of production. The local food is rich in nutrition and healthful foods. The local food is fresh and not exposed to infections easily. The community can easily get the food items in their surroundings. The local food sources are not expensive when it is compared to the other proceed food items, and it is affordable to the community purchasing power. The food is very tasty and palatable capacity by the whole community categories. The basic problems in Ethiopia are the community experiences some of the common food source items. On the contrary, inefficient food production, low economic growth, and climate variability affected food production. This leads to serious food shortages and acute health problems. The objective of the study is to identify local food sources and analyze the advantage and benefits of local food sources. Casava is one of the root crop plants in Ethiopia and easily adapts to any type of agroecology in every place in the country. 50 community members have been identified to prepare casava in different forms of food items. They have prepared in the forms of Bread, Injera, Porridge, Boiled casava, fried chips Casava, and Cocktails. The prepared food items have been exposed to the community as a food festival to eat and taste how much interesting Even though there is a cultural barrier to eating the food items, the community had the food and tasted it the food. The result showed that community awareness is still not addressed the benefits of local food sources yet. The local food has high nutritional value and healthful foods. The local food sources are fresh and easily produced in every place of the country.

Keywords: bread, cassava, injera, nutrition

Procedia PDF Downloads 99
1370 Effect of Vitrification on Embryos Euploidy Obtained from Thawed Oocytes

Authors: Natalia Buderatskaya, Igor Ilyin, Julia Gontar, Sergey Lavrynenko, Olga Parnitskaya, Ekaterina Ilyina, Eduard Kapustin, Yana Lakhno

Abstract:

Introduction: It is known that cryopreservation of oocytes has peculiar features due to the complex structure of the oocyte. One of the most important features is that mature oocytes contain meiotic division spindle which is very sensitive even to the slightest variation in temperature. Thus, the main objective of this study is to analyse the resulting euploid embryos obtained from thawed oocytes in comparison with the data of preimplantation genetic screening (PGS) in fresh embryo cycles. Material and Methods: The study was conducted at 'Medical Centre IGR' from January to July 2016. Data were analysed for 908 donor oocytes obtained in 67 cycles of assisted reproductive technologies (ART), of which 693 oocytes were used in the 51 'fresh' cycles (group A), and 215 oocytes - 16 ART programs with vitrification female gametes (group B). The average age of donors in the groups match 27.3±2.9 and 27.8±6.6 years. Stimulation of superovulation was conducted the standard way. Vitrification was performed in 1-2 hours after transvaginal puncture and thawing of oocytes were carried out in accordance with the standard protocol of Cryotech (Japan). Manipulation ICSI was performed 4-5 hours after transvaginal follicle puncture for fresh oocytes, or after defrosting - for vitrified female gametes. For the PGS, an embryonic biopsy was done on the third or on the fifth day after fertilization. Diagnostic procedures were performed using fluorescence in situ hybridization with the study of such chromosomes as 13, 16, 18, 21, 22, X, Y. Only morphologically quality blastocysts were used for the transfer, the estimation of which corresponded to the Gardner criteria. The statistical hypotheses were done using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: The mean number of mature oocytes per cycle in group A was 13.58±6.65 and in group B - 13.44±6.68 oocytes for patient. The survival of oocytes after thawing totaled 95.3% (n=205), which indicates a highly effective quality of performed vitrification. The proportion of zygotes in the group A corresponded to 91.1%(n=631), in the group B – 80.5%(n=165), which shows statistically significant difference between the groups (p<0.001) and explained by non-viable oocytes elimination after vitrification. This is confirmed by the fact that on the fifth day of embryos development a statistically significant difference in the number of blastocysts was absent (p>0.05), and constituted respectively 61.6%(n=389) and 63.0%(n=104) in the groups. For the PGS performing 250 embryos analyzed in the group A and 72 embryos - in the group B. The results showed that euploidy in the studied chromosomes were 40.0%(n=100) embryos in the group A and 41.7% (n=30) - in the group B, which shows no statistical significant difference (p>0.05). The indicators of clinical pregnancies in the groups amounted to 64.7% (22 pregnancies per 34 embryo transfers) and 61.5% (8 pregnancies per 13 embryo transfers) respectively, and also had no significant difference between the groups (p>0.05). Conclusions: The results showed that the vitrification does not affect the resulting euploid embryos in assisted reproductive technologies and are not reflected in their morphological characteristics in ART programs.

Keywords: euploid embryos, preimplantation genetic screening, thawing oocytes, vitrification

Procedia PDF Downloads 324
1369 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 161
1368 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria

Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh

Abstract:

Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.

Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio

Procedia PDF Downloads 129
1367 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 247
1366 Detection of JC Virus DNA and T-Ag Expression in a Subpopulation of Tunisian Colorectal Carcinomas

Authors: Wafa Toumi, Alessandro Ripalti, Luigi Ricciardiello, Dalila Gargouri, Jamel Kharrat, Abderraouf Cherif, Ahmed Bouhafa, Slim Jarboui, Mohamed Zili, Ridha Khelifa

Abstract:

Background & aims: Colorectal cancer (CRC) is one of the most common malignancies throughout the world. Several risk factors, both genetic and environmental, including viral infections, have been linked to colorectal carcinogenesis. A few studies report the detection of human polyomavirus JC (JCV) DNA and transformation antigen (T-Ag) in a fraction of the colorectal tumors studied and suggest an association of this virus with CRC. In order to investigate whether such an association of JCV with CRC will hold in a different epidemiological setting, we looked for the presence of JCV DNA and T-Ag expression in a group of Tunisian CRC patients. Methods: Fresh colorectal mucosa biopsies were obtained from 17 healthy volunteers and from both colorectal tumors and adjacent normal tissues of 47 CRC patients. DNA was extracted from fresh biopsies or from formalin-fixed, paraffin-embedded tissue sections using the Invitrogen Purelink Genomic DNA mini Kit. A simple PCR and a nested PCR were used to amplify a region of the T-Ag gene. The obtained PCR products revealed a 154 bp and a 98 bp bands, respectively. Specificity was confirmed by sequencing of the PCR products. T-Ag expression was determined by immunohistochemical staining using a mouse monoclonal antibody (clone PAb416) directed against SV40 T-Ag that cross reacts with JCV T-Ag. Results: JCV DNA was found in 12 (25%) and 22 (46%) of the CRC tumors by simple PCR and by nested PCR, respectively. All paired adjacent normal mucosa biopsies were negative for viral DNA. Sequencing of the DNA amplicons obtained confirmed the authenticity of T-Ag sequences. Immunohistochemical staining showed nuclear T-Ag expression in all 22 JCV DNA- positive samples and in 3 additional tumor samples which appeared DNA-negative by PCR. Conclusions: These results suggest an association of JCV with a subpopulation of Tunisian colorectal tumors.

Keywords: colorectal cancer, immunohistochemistry, Polyomavirus JC, PCR

Procedia PDF Downloads 361