Search results for: forest machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1599

Search results for: forest machines

969 Strategies for Conserving Ecosystem Functions of the Aravalli Range to Combat Land Degradation: Case of Kishangarh and Tijara Tehsil in Rajasthan, India

Authors: Saloni Khandelwal

Abstract:

The Aravalli hills are one of the oldest and most distinctive mountain chains of peninsular India spanning in around 692 Km. More than 60% of it falls in the state of Rajasthan and influences ecological equilibrium in about 30% of the state. Because of natural and human-induced activities, physical gaps in the Aravallis are increasing, new gaps are coming up, and its physical structure is changing. There are no strict regulations to protect and monitor the Aravallis and no comprehensive research and study has been done for the enhancement of ecosystem functions of these ranges. Through this study, various factors leading to Aravalli’s degradation are identified and its impacts on selected areas are analyzed. A literature study is done to identify factors responsible for the degradation. To understand the severity of the problem at the lowest level, two tehsils from different districts in Rajasthan, which are the most affected due to illegal mining and increasing physical gaps are selected for the study. Case-1 of three-gram panchayats in Kishangarh Tehsil of Ajmer district focuses on the expanding physical gaps in the Aravalli range, and case-2 of three-gram panchayats in Tijara Tehsil of Alwar district focuses on increasing illegal mining in the Aravalli range. For measuring the degradation, physical, biological and social indicators are identified through literature review and for both the cases analysis is done on the basis of these indicators. Primary survey and focus group discussions are done with villagers, mining owners, illegal miners, and various government officials to understand dependency of people on the Aravalli and its importance to them along with the impact of degradation on their livelihood and environment. From the analysis, it has been found that green cover is continuously decreasing in both cases, dense forest areas do not exist now, the groundwater table is depleting at a very fast rate, soil is losing its moisture resulting in low yield and shift in agriculture. Wild animals which were easily seen earlier are now extinct. Cattles of villagers are dependent on the forest area in the Aravalli range for food, but with a decrease in fodder, their cattle numbers are decreasing. There is a decrease in agricultural land and an increase in scrub and salt-affected land. Analysis of various national and state programmes, acts which were passed to conserve biodiversity has been done showing that none of them is helping much to protect the Aravalli. For conserving the Aravalli and its forest areas, regional level and local level initiatives are required and are proposed in this study. This study is an attempt to formulate conservation and management strategies for the Aravalli range. These strategies will help in improving biodiversity which can lead to the revival of its ecosystem functions. It will also help in curbing the pollution at the regional and local level. All this will lead to the sustainable development of the region.

Keywords: Aravalli, ecosystem, LULC, Rajasthan

Procedia PDF Downloads 135
968 A Survey on Constraint Solving Approaches Using Parallel Architectures

Authors: Nebras Gharbi, Itebeddine Ghorbel

Abstract:

In the latest years and with the advancements of the multicore computing world, the constraint programming community tried to benefit from the capacity of new machines and make the best use of them through several parallel schemes for constraint solving. In this paper, we propose a survey of the different proposed approaches to solve Constraint Satisfaction Problems using parallel architectures. These approaches use in a different way a parallel architecture: the problem itself could be solved differently by several solvers or could be split over solvers.

Keywords: constraint programming, parallel programming, constraint satisfaction problem, speed-up

Procedia PDF Downloads 316
967 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles

Procedia PDF Downloads 480
966 Regulating Transnational Corporations and Protecting Human Rights: Analyzing the Efficiency of International Legal Framework

Authors: Stellina Jolly

Abstract:

July 18th to August 19th 2013 has gone down in the history of India for undertaking the country’s first environment referendum. The Supreme Court had ruled that the Vedanta Group's bauxite mining project in the Niyamgiri Hills of Orissa will have to get clearance from the gram sabha, which will consider the cultural and religious rights of the tribals and forest dwellers living in Rayagada and Kalahandi districts. In the Niyamgiri hills, people of small tribal hamlets were asked to voice their opinion on bauxite mining in their habitat. The ministry has reiterated its stand that mining cannot be allowed on the Niyamgiri hills because it will affect the rights of the Dongria Kondhs. The tribal person who occupies the Niyamgiri Hills in Eastern India accomplished their first success in 2010 in their struggle to protect and preserve their existence, culture and land against Vedanta a London-based mining giant. In August, 2010 Government of India revoked permission for Vedanta Resources to mine bauxite from hills in Orissa State where the Dongria Kondh live as forest dwellers. This came after various protests and reports including amnesty report wherein it highlighted that an alumina refinery in eastern India operated by a subsidiary of mining company. Vedanta was accused of causing air and water pollution that threatens the health of local people and their access to water. The abuse of human rights by corporate is not a new issue it has occurred in Africa, Asia and other parts of the world. Paper focuses on the instances and extent of human right especially in terms of environment violations by corporations. Further Paper details on corporations and sustainable development. Paper finally comes up with certain recommendation including call for a declaration by United Nations on Corporate environment Human Rights Liability.

Keywords: environment, corporate, human rights, sustainable development

Procedia PDF Downloads 475
965 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 71
964 A Study on Conventional and Improved Tillage Practices for Sowing Paddy in Wheat Harvested Field

Authors: R. N. Pateriya, T. K. Bhattacharya

Abstract:

In India, rice-wheat cropping system occupies the major area and contributes about 40% of the country’s total food grain production. It is necessary that production of rice and wheat must keep pace with growing population. However, various factors such as degradation in natural resources, shift in cropping pattern, energy constraints etc. are causing reduction in the productivity of these crops. Seedbed for rice after wheat is difficult to prepare due to presence of straw and stubbles, and require excessive tillage operations to bring optimum tilth. In addition, delayed sowing and transplanting of rice is mainly due to poor crop residue management, multiplicity of tillage operations and non-availability of the power source. With increasing concern for fuel conservation and energy management, farmers might wish to estimate the best cultivation system for more productivity. The widest spread method of tilling land is ploughing with mould board plough. However, with the mould board plough upper layer of soil is neither always loosened at the desired extent nor proper mixing of different layers are achieved. Therefore, additional operations carried out to improve tilth. The farmers are becoming increasingly aware of the need for minimum tillage by minimizing the use of machines. Soil management can be achieved by using the combined active-passive tillage machines. A study was therefore, undertaken in wheat-harvested field to study the impact of conventional and modified tillage practices on paddy crop cultivation. Tillage treatments with tractor as a power source were selected during the experiment. The selected level of tillage treatments of tractor machinery management were (T1:- Direct Sowing of Rice), (T2:- 2 to 3 harrowing and no Puddling with manual transplanting), (T3:- 2 to 3 harrowing and Puddling with paddy harrow with manual transplanting), (T4:- 2 to 3 harrowing and Puddling with Rotavator with manual transplanting). The maximum output was obtained with treatment T1 (7.85 t/ha)) followed by T4 (6.4 t/ha), T3 (6.25 t/ha) and T2 (6.0 t/ha)) respectively.

Keywords: crop residues, cropping system, minimum tillage, yield

Procedia PDF Downloads 206
963 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 417
962 A Study of Social and Cultural Context for Tourism Management by Community Kamchanoad District, Amphoe Ban Dung, Udon Thani Province

Authors: Phusit Phukamchanoad, Chutchai Ditchareon, Suwaree Yordchim

Abstract:

This research was to study on background and social and cultural context of Kamchanoad community for sustainable tourism management. All data was collected through in-depth interview with village headmen, community committees, teacher, monks, Kamchanoad forest field officers and respected senior citizen above 60 years old in the community who have lived there for more than 40 years. Altogether there were 30 participants for this research. After analyzing the data, content from interview and discussion, Kamchanoad has both high land and low land in the region as well as swamps that are very capable of freshwater animals’ conservation. Kamchanoad is also good for agriculture and animal farming. 80% of Kamchanoad’s land are forest, freshwater and rice farms. Kamchanoad was officially set up as community in 1994 as “Baan Nonmuang”. Inhabitants in Kamchanoad make a living by farming based on sufficiency economy. They have rice farm, eucalyptus farm, cassava farm and rubber tree farm. Local people in Kamchanoad still believe in the myth of Srisutto Naga. They are still religious and love to preserve their traditional way of life. In order to understand how to create successful tourism business in Kamchanoad, we have to study closely on local culture and traditions. Outstanding event in Kamchanoad is the worship of Grand Srisutto, which is on the full-moon day of 6th month or Visakhabucha Day. Other big events are also celebration at the end of Buddhist lent, Naga firework, New Year celebration, Boon Mahachart, Songkran, Buddhist Lent, Boon Katin and Loy Kratong. Buddhism is the main religion in Kamchanoad. The promotion of tourism in Kamchanoad is expected to help spreading more income for this region. More infrastructures will be provided for local people as well as funding for youth support and people activities.

Keywords: social and culture area, tourism management, Kamchanoad Community, Udon Thani Province

Procedia PDF Downloads 216
961 Quantitative Ethno-Botanical Analysis and Conservation Issues of Medicinal Flora from Alpine and Sub-Alpine, Hindukush Region of Pakistan

Authors: Gul Jan

Abstract:

It is the first quantitative ethno-botanical analysis and conservation issues of medicinal flora of Alpine and Sub-alpine, Hindikush region of Pakistan. The objective of the study aims to report, compare the uses and highlight the ethno-Botanical significance of medicinal plants for treatment of various diseases. A total of 250 (242 males and 8 females) local informants including 10 Local Traditional Healers were interviewed. Information was collected through semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Jaccard index (JI), Informant Consensus Factor (ICF), use value (UV) and Relative frequency of citation (RFC).Thorough survey indicated that 57 medicinal plants belongs to 43 families were investigated to treat various illnesses. The highest ICF is recorded for digestive system (0.69%), Circolatory system (0.61%), urinary tract system, (0.53%) and respiratory system (0.52%). Used value indicated that, Achillea mellefolium (UV = 0.68), Aconitum violaceum (UV = 0.69), Valeriana jatamansi (UV = 0.63), Berberis lyceum (UV = 0.65) and are exceedingly medicinal plant species used in the region. In comparison, highest similarity index is recorded in these studies with JI 17.72 followed by 16.41. According to DMR output, Pinus williciana ranked first due to multipurpose uses among all species and was found most threatened with higher market value. Unwise used of natural assets pooled with unsuitable harvesting practices have exaggerated pressure on plant species of the research region. The main issues causative to natural variety loss found were over grazing of animals, forest violation, wild animal hunting, fodder, plant collection as medicine, fuel wood, forest fire, and invasive species negatively affect the natural resources. For viable utilization, in situ and ex situ conservation, skillful collecting, and reforestation project may be the resolution. Further wide field management research is required.

Keywords: quantitative analysis, conservations issues, medicinal flora, alpine and sub-alpine, Hindukush region

Procedia PDF Downloads 304
960 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 124
959 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73
958 Increasing Productivity through Lean Manufacturing Principles and Tools: A Successful Rail Welding Plant Case

Authors: T. A. Faria, C. C. Toniolo, L. F. Ribeiro

Abstract:

In order to satisfy the costumer’s needs, many sectors of industry and services has been spending major effort to make its processes more efficient. Facing a situation, when its production cannot cover the demand, the traditional way to achieve the production required involves, mostly, adding shifts, workforce, or even more machines. This paper narrates how lean manufacturing supported a dramatic increase of productivity at a rail welding plant in Brazil in order to meet the demand for the next years.

Keywords: productivity, lean manufacturing, rail welding, value stream mapping

Procedia PDF Downloads 362
957 Biofungicides in Nursery Production

Authors: Miroslava Markovic, Snezana Rajkovic, Ljubinko Rakonjac, Aleksandar Lucic

Abstract:

Oak powdery mildew is a serious problem on seedlings in nurseries as well as on naturally and artificially introduced progeny. The experiments were set on oak seedlings in two nurseries located in Central Serbia, where control of oak powdery mildew Microsphaera alphitoides Griff. et Maubl. had been conducted through alternative protection measures by means of various dosages of AQ-10 biofungicide, with and without added polymer (which has so far never been used in this country for control of oak powdery mildew). Simultaneous testing was conducted on the efficiency of a chemical sulphur-based preparation (used in this area for many years as a measure of suppression of powdery mildews, without the possibility of developing resistance of the pathogen to the active matter). To date, the Republic of Serbia has registered no fungicides for suppression of pathogens in the forest ecosystems. In order to introduce proper use of new disease-fighting agents into a country, certain relevant principles, requirements and criteria prescribed by the Forest Stewardship Council (FSC) must be observed, primarily with respect to measures of assessment and mitigation of risks, the list of dangerous and highly dangerous pesticides with the possibility of alternative protection. One of the main goals of the research was adjustment of the protective measures to the FSC policy through selection of eco-toxicologically favourable fungicides, given the fact that only preparations named on the list of permitted active matters are approved for use in certified forests. The results of the research have demonstrated that AQ-10 biofungicide can be used as a part of integrated disease management programmes as an alternative, through application of several treatments during vegetation and combination with other active matters registered for these purposes, so as to curtail the use of standard fungicides for control of powdery mildews on oak seedlings in nurseries. The best results in suppression of oak powdery mildew were attained through use of AQ-10 biofungicide (dose 50 or 70g/ha) with added polymer Nu Film-17 (dose 1.0 or 1.5 l/ha). If the treatment is applied at the appropriate time, even fewer number of treatments and smaller doses will be just as efficient.

Keywords: oak powdery mildew, biofungicides, polymers, Microsphaera alphitoides

Procedia PDF Downloads 375
956 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 315
955 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes

Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani

Abstract:

Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.

Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot

Procedia PDF Downloads 420
954 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 73
953 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 127
952 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 14
951 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 234
950 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 579
949 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 79
948 Design Data Sorter Circuit Using Insertion Sorting Algorithm

Authors: Hoda Abugharsa

Abstract:

In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.

Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit

Procedia PDF Downloads 443
947 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
946 Design and Implementation of Wireless Syncronized AI System for Security

Authors: Saradha Priya

Abstract:

Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.

Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor

Procedia PDF Downloads 346
945 Biodiversity Conservation Practices Among Indigenous Peoples in Caraga Region, Mindanao, Philippines

Authors: Milagros S. Salibad, Levita B. Grana

Abstract:

The presence and role of Indigenous Peoples residing in key biodiversity, protected, and watershed areas within the ancestral domain in the Caraga Region hold immense significance. This study aimed to determine the level of biodiversity conservation practices among the Mamanwas, Manobos, and Higaonons, and identify facilitating or hindering factors. Employing a mixed-method research design, 421 respondents participated through a researcher-made questionnaire. Focus group discussions, key informant interviews, researcher field notes, community immersions, and secondary sources were done. The three groups have demonstrated a high level of biodiversity conservation practices manifesting their commitment to conserving their natural resources and ecosystems. Evidently, selecting and cutting only mature trees for shelter and tribal usage, and preservation of large trees that harbor ancestors’ spirits and worship through rituals (Mambabaja). Each group exhibited unique environmental practices shaped by their distinct cultures, traditions, customary knowledge, and access to information. The Mamanwa practiced traditional hunting and gathering by using traps while Manobo practiced shifting cultivation to maintain soil fertility and biodiversity, and Higaonon managed forest resources through traditional forest management (establishment of sacred forests and conservation areas). Various facilitating and hindering factors influenced their conservation efforts. Their traditional knowledge and practices, partnership and collaboration, legal recognition and support, access to information, and biodiversity monitoring system facilitate practices. Insufficient government assistance, political and social issues, scarce financial support, inadequate policy enforcement, lack of livelihood opportunities, and land use conflicts hinder them. Monitoring the sustainability of IPs' local biodiversity conservation practices is essential as they contribute to conservation endeavors.

Keywords: biodiversity, conservation, indigenous peoples, traditional knowledge

Procedia PDF Downloads 73
944 PWM Harmonic Injection and Frequency-Modulated Triangular Carrier to Improve the Lives of the Transformers

Authors: Mario J. Meco-Gutierrez, Francisco Perez-Hidalgo, Juan R. Heredia-Larrubia, Antonio Ruiz-Gonzalez, Francisco Vargas-Merino

Abstract:

More and more applications power inverters connected to transformers, for example, the connection facilities to the power grid renewable generation. It is well known that the quality of signal power inverters it is not a pure sine. The harmonic content produced negative effects, one of which is the heating of electrical machines and therefore, affects the life of the machines. The decrease of life of transformers can be calculated by Arrhenius or Montsinger equation. Analyzing this expression any (long-term) decrease of a transformer temperature for 6º C - 7º C means doubles its life-expectancy. Methodologies: This work presents the technique of pulse width modulation (PWM) with an injection of harmonic and triangular frequency carrier modulated in frequency. This technique is used to improve the quality of the output voltage signal of the power inverters controlled PWM. The proposed technique increases in the fundamental term and a significant reduction in low order harmonics with the same commutations per time that control sine PWM. To achieve this, the modulating wave is compared to a triangular carrier with variable frequency over the period of the modulator. Therefore, it is, advantageous for the modulating signal to have a large amount of sinusoidal “information” in the areas of greater sampling. A triangular signal with a frequency that varies over the modulator’s period is used as a carrier, for obtaining more samples in the area with the greatest slope. A power inverter controlled by PWM proposed technique is connected to a transformer. Results: In order to verify the derived thermal parameters under different operation conditions, another ambient and loading scenario is involved for a further verification, which was sampled from the same power transformer. Temperatures of different parts of the transformer will be exposed for each PWM control technique analyzed. An assessment of the temperature be done with different techniques PWM control and hence the life of the transformer is calculated for each technique. Conclusion: This paper analyzes such as transformer heating produced by this technique and compared with other forms of PWM control. In it can be seen as a reduction the harmonic content produces less heat transformer and therefore, an increase in the life of the transformer.

Keywords: heating, power-inverter, PWM, transformer

Procedia PDF Downloads 411
943 RAFU Functions in Robotics and Automation

Authors: Alicia C. Sanchez

Abstract:

This paper investigates the implementation of RAFU functions (radical functions) in robotics and automation. Specifically, the main goal is to show how these functions may be useful in lane-keeping control and the lateral control of autonomous machines, vehicles, robots or the like. From the knowledge of several points of a certain route, the RAFU functions are used to achieve the lateral control purpose and maintain the lane-keeping errors within the fixed limits. The stability that these functions provide, their ease of approaching any continuous trajectory and the control of the possible error made on the approximation may be useful in practice.

Keywords: automatic navigation control, lateral control, lane-keeping control, RAFU approximation

Procedia PDF Downloads 300
942 Spectral Clustering for Manufacturing Cell Formation

Authors: Yessica Nataliani, Miin-Shen Yang

Abstract:

Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices.

Keywords: group technology, cell formation, spectral clustering, grouping efficiency

Procedia PDF Downloads 403
941 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches

Authors: Igor B. Sivaev

Abstract:

Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).

Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations

Procedia PDF Downloads 169
940 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 69