Search results for: differential invariant signature curves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2699

Search results for: differential invariant signature curves

2069 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics

Authors: Maria Arechavaleta, Mark Halpin

Abstract:

In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.

Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems

Procedia PDF Downloads 219
2068 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 211
2067 Polar Nanoregions in Lead-Free Relaxor Ceramics: Unveiling through Impedance Spectroscopy

Authors: Mohammed Mesrar, Hamza El Malki, Hamza Mesrar

Abstract:

In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.

Keywords: (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3, Rietveld refinement, Scanning electron microscopy (SEM), Williamson-Hall plots, charge density distribution, dielectric properties

Procedia PDF Downloads 37
2066 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop

Abstract:

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow

Procedia PDF Downloads 267
2065 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes

Authors: Amir Bahrami

Abstract:

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.

Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes

Procedia PDF Downloads 314
2064 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark

Procedia PDF Downloads 264
2063 Words Spotting in the Images Handwritten Historical Documents

Authors: Issam Ben Jami

Abstract:

Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.

Keywords: feature matching, historical documents, pattern recognition, word spotting

Procedia PDF Downloads 261
2062 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 155
2061 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption

Authors: M. François, L. Sigot, C. Vallières

Abstract:

Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.

Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence

Procedia PDF Downloads 222
2060 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects

Authors: Saeid Sahmani

Abstract:

Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.

Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect

Procedia PDF Downloads 330
2059 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 290
2058 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 258
2057 Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant

Authors: R. K. Saket

Abstract:

This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper.

Keywords: self excited induction generator, annual and daily flow duration curve, sewage system, municipal waste water, reliability evaluation, Gaussian distribution, Simpson 1/3rd rule

Procedia PDF Downloads 543
2056 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media

Authors: Sofiane Grira, Hichem Eleuch

Abstract:

We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.

Keywords: non-linear differential equations, solitons, wave propagations, optical fiber

Procedia PDF Downloads 119
2055 Study of Thermal and Mechanical Properties of Ethylene/1-Octene Copolymer Based Nanocomposites

Authors: Sharmila Pradhan, Ralf Lach, George Michler, Jean Mark Saiter, Rameshwar Adhikari

Abstract:

Ethylene/1-octene copolymer was modified incorporating three types of nanofillers differed in their dimensionality in order to investigate the effect of filler dimensionality on mechanical properties, for instance, tensile strength, microhardness etc. The samples were prepared by melt mixing followed by compression moldings. The microstructure of the novel material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) method and Transmission electron microscopy (TEM). Other important properties such as melting, crystallizing and thermal stability were also investigated via differential scanning calorimetry (DSC) and Thermogravimetry analysis (TGA). The FTIR and XRD results showed that the composites were formed by physical mixing. The TEM result supported the homogeneous dispersion of nanofillers in the matrix. The mechanical characterization performed by tensile testing showed that the composites with 1D nanofiller effectively reinforced the polymer. TGA results revealed that the thermal stability of pure EOC is marginally improved by the addition of nanofillers. Likewise, melting and crystallizing properties of the composites are not much different from that of pure.

Keywords: copolymer, differential scanning calorimetry, nanofiller, tensile strength

Procedia PDF Downloads 222
2054 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 88
2053 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 119
2052 Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances

Authors: Weic-Ting Chen, Jo-Ming Tseng

Abstract:

Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.

Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters

Procedia PDF Downloads 77
2051 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 188
2050 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 341
2049 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 236
2048 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 129
2047 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 102
2046 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

Authors: Beena Sethi

Abstract:

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis

Procedia PDF Downloads 407
2045 Influence of High Hydrostatic Pressure Application (HHP) and Osmotic Dehydration (DO) as a Pretreatment to Hot –Air Drying of Abalone (Haliotis Rufescens) Cubes

Authors: Teresa Roco, Mario Perez Won, Roberto Lemus-Mondaca, Sebastian Pizarro

Abstract:

This research presents the simultaneous application of high hydrostatic pressure application (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of abalone cubes. The drying time was reduced to 6 hours at 60ºC as compared to the abalone drying by only a 15% NaCl osmotic pretreatment and at an atmospheric pressure that took 10 hours to dry at the same temperature. This was due to the salt and HHP saturation since osmotic pressure increases as water loss increases, thus needing a more reduced time in a convective drying, so water effective diffusion in drying plays an important role in this research. Different working conditions as pressure (350-550 MPa), pressure time ( 5-10 min), salt concentration, NaCl 15% and drying temperature (40-60ºC) will be optimized according to kinetic parameters of each mathematical model (Table 1). The models used for drying experimental curves were those corresponding to Weibull, Logarithmic and Midilli-Kucuk, but the latest one was the best fitted to the experimental data (Figure 1). The values for water effective diffusivity varied from 4.54 – to 9.95x10-9 m2/s for the 8 curves (DO+HHP) whereas the control samples (neither DO nor HHP) varied among 4.35 and 5.60x10-9 m2/s, for 40 and 60°C, respectively and as to drying by osmotic pretreatment at 15% NaCl from 3.804 to 4.36x10-9 m2/s at the same temperatures. Finally as to energy and efficiency consumption values for drying process (control and pretreated samples) it was found that they would be within a range of 777-1815 KJ/Kg and 8.22–19.20% respectively. Therefore, a knowledge concerning the drying kinetic as well as the consumption energy, in addition to knowledge about the quality of abalones subjected to an osmotic pretreatment (DO) and a high hydrostatic pressure (HHP) are extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.

Keywords: abalone, convective drying, high pressure hydrostatic, pretreatments, diffusion coefficient

Procedia PDF Downloads 656
2044 Programmed Speech to Text Summarization Using Graph-Based Algorithm

Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba

Abstract:

Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculations

Keywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization

Procedia PDF Downloads 190
2043 Comparison of Cervical Length Using Transvaginal Ultrasonography and Bishop Score to Predict Succesful Induction

Authors: Lubena Achmad, Herman Kristanto, Julian Dewantiningrum

Abstract:

Background: The Bishop score is a standard method used to predict the success of induction. This examination tends to be subjective with high inter and intraobserver variability, so it was presumed to have a low predictive value in terms of the outcome of labor induction. Cervical length measurement using transvaginal ultrasound is considered to be more objective to assess the cervical length. Meanwhile, this examination is not a complicated procedure and less invasive than vaginal touché. Objective: To compare transvaginal ultrasound and Bishop score in predicting successful induction. Methods: This study was a prospective cohort study. One hundred and twenty women with singleton pregnancies undergoing induction of labor at 37 – 42 weeks and met inclusion and exclusion criteria were enrolled in this study. Cervical assessment by both transvaginal ultrasound and Bishop score were conducted prior induction. The success of labor induction was defined as an ability to achieve active phase ≤ 12 hours after induction. To figure out the best cut-off point of cervical length and Bishop score, receiver operating characteristic (ROC) curves were plotted. Logistic regression analysis was used to determine which factors best-predicted induction success. Results: This study showed significant differences in terms of age, premature rupture of the membrane, the Bishop score, cervical length and funneling as significant predictors of successful induction. Using ROC curves found that the best cut-off point for prediction of successful induction was 25.45 mm for cervical length and 3 for Bishop score. Logistic regression was performed and showed only premature rupture of membranes and cervical length ≤ 25.45 that significantly predicted the success of labor induction. By excluding premature rupture of the membrane as the indication of induction, cervical length less than 25.3 mm was a better predictor of successful induction. Conclusion: Compared to Bishop score, cervical length using transvaginal ultrasound was a better predictor of successful induction.

Keywords: Bishop Score, cervical length, induction, successful induction, transvaginal sonography

Procedia PDF Downloads 310
2042 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique

Authors: Hassen M. Ouakad

Abstract:

In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.

Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin

Procedia PDF Downloads 210
2041 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach

Authors: Alma Sobrevilla

Abstract:

Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.

Keywords: women, decision-making power, intrahousehold, Mexico

Procedia PDF Downloads 332
2040 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data

Authors: Elzbieta Babula, Juhyun Park

Abstract:

Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.

Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions

Procedia PDF Downloads 197