Search results for: chemical alternative assessment
12501 Recovery of Proteins from EDAM Whey Using Membrane Ultrafiltration
Authors: F. Yelles-Allam, A. A. Nouani
Abstract:
In Algeria, whey is discarded without any treatment and this causes not only pollution problem, but also a loss in nutritive components of milk. In this paper, characterization of EDAM whey, which is resulted from pasteurised mixture of cow’s milk and skim milk, and recovery of whey protein by ultrafiltration / diafiltration, was studied. The physical-chemical analysis of whey has emphasized on its pollutant and nutritive characteristics. In fact, its DBO5 and DCO are 49.33, and 127.71 gr of O2/l of whey respectively. It contains: fat (1,90±0,1 gr/l), lactose (47.32±1,57 gr/l), proteins (8.04±0,2 gr/l) and ashes (5,20±0,15 gr/l), calcium (0,48±0,04 gr/l), Na (1.104gr/l), K (1.014 gr/l), Mg (0.118 gr/l) and P (0.482 gr/l). Ultrafiltration was carried out in a polyetersulfone membrane with a cut-off of 10K. Its hydraulic intrinsic resistance and permeability are respectively: 2.041.1012 m-1 and 176,32 l/h.m2 at PTM of 1 bar. The retentate obtained at FC6, contains 16,33g/l of proteins and 70,25 g/l of dry matter. The retention rate of protein is 97, 7% and the decrease in DBO5 and DCO are at 18.875 g /l and 42.818 g/l respectively. Diafiltration performed on protein concentrates allowed the complete removal of lactose and minerals. The ultrafiltration of the whey before the disposal is an alternative for Algéria dairy industry.Keywords: diafiltration, DBO, DCO, protein, ultrafiltration, whey
Procedia PDF Downloads 25612500 Systematic Review of Functional Analysis in Brazil
Authors: Felipe Magalhaes Lemos
Abstract:
Functional behavior analysis is a procedure that has been studied for several decades by behavior analysts. In Brazil, we still have few studies in the area, so it was decided to carry out a systematic review of the articles published in the area by Brazilians. A search was done on the following scientific article registration sites: PsycINFO, ERIC, ISI Web of Science, Virtual Health Library. The research includes (a) peer-reviewed studies that (b) have been carried out in Brazil containing (c) functional assessment as a pre-treatment through (d) experimental procedures, direct or indirect observation and measurement of behavior problems (e) demonstrating a relationship between environmental events and behavior. During the review, 234 papers were found; however, only 9 were included in the final analysis. Of the 9 articles extracted, only 2 presented functional analysis procedures with manipulation of environmental variables, while the other 7 presented different procedures for a descriptive behavior assessment. Only the two studies using "functional analysis" used graphs to demonstrate the prevalent function of the behavior. Other studies described procedures and did not make clear the causal relationship between environment and behavior. There is still confusion in Brazil regarding the terms "functional analysis", "descriptive assessment" and "contingency analysis," which are generally treated in the same way. This study shows that few articles are published with a focus on functional analysis in Brazil.Keywords: behavior, contingency, descriptive assessment, functional analysis
Procedia PDF Downloads 14612499 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites
Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova
Abstract:
The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.Keywords: bioceramics, composites, functionalization, surface development
Procedia PDF Downloads 12012498 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept
Authors: F. S. Irwansyah, I. Farida, Y. Maulana
Abstract:
Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.Keywords: android, augmented reality, chemical learning, geometry
Procedia PDF Downloads 20712497 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji
Abstract:
In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed
Procedia PDF Downloads 38412496 Environmental Evaluation of Alternative/Renewable Fuels Technology
Authors: Muhammad Hadi Ibrahim
Abstract:
The benefits of alternative/renewable fuels in general and a study of the environmental impacts of biofuels in particular have been reviewed in this paper. It is a known fact that, energy generation using fossil fuel produces many important pollutants including; nitrogen oxides, hydrocarbons, soot, dust, smoke and other particulate harmful matter. It’s believed that if carbon dioxide levels continue to increase drastically, the planet will become warmer and will most likely result in a variety of negative impacts including; sea-level rise, extreme and unpredictable weather events and an increased frequency of draughts in inland agricultural zones. Biofuels such as alcohols, biogas, etc. appear to be more viable alternatives, especially for use as fuels in diesel engines. The substitution of fossil fuel through increased utilization of biofuels produced in a sustainable manner, can contribute immensely towards a cleaner environment, reduction in greenhouse gas emissions and mitigation of climate change. Stakeholders in the energy sector can be sensitized by the findings of the research study and to consider the possible adverse effects in developing technologies for the production and combustion of biofuels.Keywords: emission, energy, renewable/alternative fuel, environment, pollution
Procedia PDF Downloads 20612495 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research
Authors: Chan Kwong Tung
Abstract:
Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching
Procedia PDF Downloads 34612494 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography
Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld
Abstract:
With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry
Procedia PDF Downloads 31112493 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 6112492 Essential Oil Analysis of the Aerial Parts of Sideritis incana and Calamitha hispidula
Authors: Smain Amiraa, Hocine Laouerb, Fatima Benchikh-Amiraa, Guido Flaminic
Abstract:
The aerial parts of Sideritis incana and Calamintha hispidula at the flowering stage were submitted to hydrodistillation in a Clevenger–type apparatus for 3 hours and the chemical composition of the essential oil was analyzed by GC coupled to GC-MS. The essential oil contained a total of 99 constituents for S. incana and 31 for C. hispidula representing 95.7% and 99.6 of the total oils, rerspectively. The mains components of S. incana oil were linalool (25.2), cedrol (13.7%), geraniol (7%) and α-terpineol (5.4%). The chemical constituents of the oil from C. hispidula were predominated by pulegone (43.2%), isomenthone (36%), piperitone (3.2%), limonene (2.6%) and 4-terpineol (2.5%). The results revealed that the oil of the plants is characterized by the presence of many important components which could be applied in food, pharmaceutical and perfume industry.Keywords: essential oils, Calamintha hispidula, Sideritis incana, chemical and molecular engineering
Procedia PDF Downloads 24712491 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia
Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah
Abstract:
The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin
Procedia PDF Downloads 36112490 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 21212489 ADHD: Assessment of Pragmatic Skills in Adults
Authors: Elena Even-Simkin
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most frequently diagnosed disorders in children, but in many cases, the diagnosis is not provided until adulthood. Diagnosing adults with ADHD faces different obstacles due to numerous factors, such as educational or under-resourced familial environment, high intelligence compensating for stress-inducing difficulties, and additional comorbidities. Undiagnosed children and adolescents with ADHD may become undiagnosed adults with ADHD, who miss out on the early treatment and may experience significant social and pragmatic difficulties, leading to functional problems that subsequently affect their lifestyle, education, and occupational functioning. The proposed study presents a cost-effective and unique consideration of the pragmatic aspect among adults with ADHD. It provides a systematic and standardized evaluation of the pragmatic level in adults with ADHD, based on a comprehensive approach introduced by Arcara & Bambini (2016) for the assessment of pragmatic abilities in neuro-typical individuals. This assessment tool can promote the inclusion of pragmatic skills in the cognitive profile in the diagnostic practice of ADHD, and, thus, the proposed instrument can help not only identify the pragmatic difficulties in the ADHD population but also advance effective intervention programs that specifically focus on pragmatic skills in the targeted population.Keywords: ADHD, adults, assessment, pragmatics
Procedia PDF Downloads 7612488 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication
Authors: Susan Lewis
Abstract:
The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.Keywords: quality assurance, student learning; learning outcomes, music and technology
Procedia PDF Downloads 18612487 Fairness in Grading of Work-Integrated Learning Assessment: Key Stakeholders’ Challenges and Solutions
Authors: Geraldine O’Neill
Abstract:
Work-integrated learning is a valuable learning experience for students in higher education. However, the fairness of the assessment process has been identified as a challenge. This study explored solutions to this challenge through interviews with expert authors in the field and workshops across nine different disciplines in Ireland. In keeping with the use of a participatory and action research methodology, the key stakeholders in the process, the students, educators, and practitioners, identified some solutions. The solutions included the need to: clarify the assessments’ expectations; enhance the flexibility of the competencies, reduce the number of competencies; use grading scales with lower specificity; support practitioner training, and empower students in the assessment process. The results are discussed as they relate to interactional, procedural, and distributive fairness.Keywords: competencies, fairness, grading scales, work-integrated learning
Procedia PDF Downloads 12512486 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering
Authors: Dong Nyoung Heo, Il Keun Kwon
Abstract:
Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing
Procedia PDF Downloads 11412485 Inferring Cognitive Skill in Concept Space
Authors: Rania A. Aboalela, Javed I. Khan
Abstract:
This research presents a learning assessment theory of Cognitive Skill in Concept Space (CS2) to measure the assessed knowledge in terms of cognitive skill levels of the concepts. The cognitive skill levels refer to levels such as if a student has acquired the state at the level of understanding, or applying, or analyzing, etc. The theory is comprised of three constructions: Graph paradigm of a semantic/ ontological scheme, the concept states of the theory and the assessment analytics which is the process to estimate the sets of concept state at a certain skill level. Concept state means if a student has already learned, or is ready to learn, or is not ready to learn a certain skill level. The experiment is conducted to prove the validation of the theory CS2.Keywords: cognitive skill levels, concept states, concept space, knowledge assessment theory
Procedia PDF Downloads 32412484 Rational Design and Synthesis of 2D/3D Conjugated Porous Polymers via Facile and 'Greener' Direct Arylation Polycondensation
Authors: Hassan Bohra, Mingfeng Wang
Abstract:
Conjugated porous polymers (CPPs) are amorphous, insoluble and highly robust organic semiconductors that have been largely synthesized by traditional transition-metal catalyzed reactions. The distinguishing feature of CPP materials is that they combine microporosity and high surface areas with extended conjugation, making them ideal for versatile applications such as separation, catalysis and energy storage. By applying a modular approach to synthesis, chemical and electronic properties of CPPs can be tailored for specific applications making these materials economical alternatives to inorganic semiconductors. Direct arylation - an environmentally benign alternative to traditional polymerization reactions – is one such reaction that extensively over the last decade for the synthesis of linear p-conjugated polymers. In this report, we present the synthesis and characterization of a new series of robust conjugated porous polymers synthesized by facile direct arylation polymerization of thiophene-flanked acceptor building blocks with multi-brominated aryls with different geometries. We observed that the porosities and morphologies of the polymers are determined by the chemical structure of the aryl bromide used. Moreover, good control of the optical bandgap in the range 2.53 - 1.3 eV could be obtained by using different building blocks. Structure-property relationships demonstrated in this study suggest that direct arylation polymerization is an attractive synthetic tool for the rational design of porous organic materials with tunable photo-physical properties for applications in photocatalysis, energy storage and conversion.Keywords: direct arylation, conjugated porous polymers, triazine, photocatalysis
Procedia PDF Downloads 29412483 Empirical Measures to Enhance Germination Potential and Control Browning of Tissue Cultures of Andrographis paniculata
Authors: Nidhi Jindal, Ashok Chaudhury, Manisha Mangal
Abstract:
Andrographis paniculata, (Burm f.) Wallich ex. Nees (Family Acanthaceae) popularly known as King of Bitters, is an important medicinal herb. It has an astonishingly wide range of medicinal properties such as anti-inflammatory,antidiarrhoeal, antiviral, antimalarial, hepatoprotective, cardiovascular, anticancer, and immunostimulatory activities. It is widely cultivated in southern Asia. Though propagation of this herb generally occurs through seeds, it has many germination problems which intrigued scientists to work out on the alternative techniques for its mass production. The potential of tissue culture techniques as an alternative tool for AP multiplication was found to be promising. However, the high mortality rate of explants caused by phenolic browning of explants is one of the difficulties reported. Low multiplication rates were reported in the proliferation phase, as well as cultures decline characterized by leaf fall and loss of overall vigor. In view of above problems, a study was undertaken to overcome seed dormancy to improve germination potential and to investigate further on the possible means for successful proliferation of cultures via preventive approaches to overcome failures caused by phenolic browning. Experiments were conducted to improve germination potential and among all the chemical and mechanical trials, scarification of seeds with sand paper proved to be the best method to enhance the germination potential (82.44%) within 7 days. Similarly, several pretreatments and media combinations were tried to overcome browning of explants leading to the conclusion that addition of 0.1% citric acid and 0.2% of ascorbic acid in the media followed by rapid sub culturing of explants controlled browning and decline of explants by 67.45%.Keywords: plant tissue culture, empirical measure, germination, tissue culture
Procedia PDF Downloads 41512482 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+ (Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11-SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium-mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.Keywords: photoluminescence, silicon nanocrystals, erbium, Raman spectroscopy
Procedia PDF Downloads 36612481 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 16512480 Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes
Authors: Karima Benfadel, Lamia Talbi, Sabiha Anas Boussaa, Afaf Brik, Assia Boukezzata, Yahia Ouadah, Samira Kaci
Abstract:
In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications.Keywords: CO₂ conversion, Cu₂S photocathode, silicone nanostructured, electrochemistry
Procedia PDF Downloads 8012479 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 38612478 An Alternative Concept of Green Screen Keying
Authors: Jin Zhi
Abstract:
This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced.Keywords: green screen, visual effects, compositing, matte
Procedia PDF Downloads 40412477 An Alternative Method for Computing Clothoids
Authors: Gerardo Casal, Miguel E. Vázquez-Méndez
Abstract:
The clothoid (also known as Cornu spiral or Euler spiral) is a curve that is characterized because its curvature is proportional to its length. This property makes that it would be widely used as transition curve for designing the layout of roads and railway tracks. In this work, from the geometrical property characterizing the clothoid, its parametric equations are obtained and two algorithms to compute it are compared. The first (classical), is widely used in Surveying Schools and it is based on the use of explicit formulas obtained from Taylor expansions of sine and cosine functions. The second one (alternative) is a very simple algorithm, based on the numerical solution of the initial value problems giving the clothoid parameterization. Both methods are compared in some typical surveying problems. The alternative method does not use complex formulas and so it is conceptually very simple and easy to apply. It gives good results, even if the classical method goes wrong (if the quotient between length and radius of curvature is high), needs no subsequent translations nor rotations and, consequently, it seems an efficient tool for designing the layout of roads and railway tracks.Keywords: transition curves, railroad and highway engineering, Runge-Kutta methods
Procedia PDF Downloads 28412476 Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel
Authors: Rasaq Kareem, Jacob Gbadeyan
Abstract:
In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs.Keywords: couette, entropy, exothermic, unsteady
Procedia PDF Downloads 51712475 Assessment of the Quality of a Mixture of Vegetable Oils from Kazakhstan Origin
Authors: Almas Mukhametov, Dina Dautkanova, Moldir Yerbulekova, Gulim Tuyakova, Raziya Zhakudaeva, Makpal Seisenaly, Asemay Kazhymurat
Abstract:
The composition of samples of mixtures of vegetable oils of Kazakhstan origin, consisting of sunflower, safflower and linseed oils, has been experimentally substantiated. With an approximate optimal ratio of w-6:w-3 fatty acids in 80:15:05 triacylglycerols, providing its therapeutic and prophylactic properties. The resulting mixture can be used in the development of functional products. The result was also identified and evaluated by physical and chemical quality indicators, the content of vitamin E, and the concentration of ions of copper (Cu), iron (Fe), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), as well as mercury (Hg).Keywords: vegetable oil, sunflower, safflower, linseed, mixture, fatty acid composition, heavy metals
Procedia PDF Downloads 18912474 Architecture Design of the Robots Operability Assessment Simulation Testbed
Authors: Sang Yeong Choi, Woo Sung Park
Abstract:
This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.Keywords: robotic system, modeling and simulation, simulation architecture, operability assessment
Procedia PDF Downloads 36512473 A New Categorization of Image Quality Metrics Based on a Model of Human Quality Perception
Authors: Maria Grazia Albanesi, Riccardo Amadeo
Abstract:
This study presents a new model of the human image quality assessment process: the aim is to highlight the foundations of the image quality metrics proposed in literature, by identifying the cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to create a novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effective objective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biases are not taken in account at all. We then propose a possible methodology to address this issue.Keywords: eye-tracking, image quality assessment metric, MOS, quality of user experience, visual perception
Procedia PDF Downloads 41312472 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity
Procedia PDF Downloads 140