Search results for: binary logistic regression
3293 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 843292 Suicidal Ideation and Associated Factors among Students Aged 13-15 Years in Association of Southeast Asian Nations (ASEAN) Member States, 2007-2014
Authors: Karl Peltzer, Supa Pengpid
Abstract:
Introduction: The aim of this study was to assess suicidal ideation and associated factors in school-going adolescents in the Association of Southeast Asian Nations (ASEAN) Member States. Methods: The analysis included 30284 school children aged 13-15 years from seven ASEAN that participated in the cross-sectional Global School-based Student Health Survey (GSHS) between 2007 and 2013. Results: The overall prevalence of suicidal ideation across seven ASEAN countries (excluding Brunei) was 12.3%, significantly higher in girls (15.1%) than boys (9.3%). Among eight ASEAN countries with the highest prevalence of suicidal ideation was in the Philippines (17.0%) and Vietnam (16.9%) and the lowest in Myanmar (1.1%) and Indonesia (4.2%). In multivariate logistic regression analysis, female gender, older age (14 or 15 years), living in a low income or lower middle income country, having no friends, loneliness, bullying victimization, having been in a physical fight in the past 12 months, lack of parental or guardian support, tobacco use and having a history of ever got drunk were associated with suicidal ideatiion. Conclusion: Different rates of suicidal ideation were observed in ASEAN member states. Several risk factors for suicidal ideation were identified which can help guide preventive efforts.Keywords: adolesents, ASEAN, correlates, suicidal behaviour
Procedia PDF Downloads 2693291 Epileptic Seizures in Patients with Multiple Sclerosis
Authors: Anat Achiron
Abstract:
Background: Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system in young adults. It involves the immune system attacking the protective covering of nerve fibers (myelin), leading to inflammation and damage. MS can result in various neurological symptoms, such as muscle weakness, coordination problems, and sensory disturbances. Seizures are not common in MS, and the frequency is estimated between 0.4 to 6.4% over the disease course. Objective: Investigate the frequency of seizures in individuals with multiple sclerosis and to identify associated risk factors. Methods: We evaluated the frequency of seizures in a large cohort of 5686 MS patients followed at the Sheba Multiple Sclerosis Center and studied associated risk factors and comorbidities. Our research was based on data collection using a cohort study design. We applied logistic regression analysis to assess the strength of associations. Results: We found that younger age at onset, longer disease duration, and prolonged time to immunomodulatory treatment initiation were associated with increased risk for seizures. Conclusions: Our findings suggest that seizures in people with MS are directly related to the demyelination process and not associated with other factors like medication side effects or comorbid conditions. Therefore, initiating immunomodulatory treatment early in the disease course could reduce not only disease activity but also decrease seizure risk.Keywords: epilepsy, seizures, multiple sclerosis, white matter, age
Procedia PDF Downloads 713290 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1433289 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1123288 Exploration of Abuse of Position for Sexual Gain by UK Police
Authors: Terri Cole, Fay Sweeting
Abstract:
Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.Keywords: abuse of position, forensic psychology, misconduct, sexual abuse
Procedia PDF Downloads 1943287 Soueif’s 'The Returning' and 'The Nativity': A Portrait of the Other as Others
Authors: Samira Brahimi
Abstract:
Throughout Aisha, her first collection of short stories, Ahdaf Soueif draws a multilayered picture of the Other as others, picturing a series of encounters of her protagonist with this very Other as a set of binary elements. The current essay includes a comparative study between two narratives, namely The Returning and The Nativity. The Other is portrayed as a male/female binary in The Returning and as 'The Foreigner' in an exotic land vs. the local in The Nativity. The analysis is to focus on Aisha, the main female character, who figures as conforming to the portrait of the stereotyped Arab Muslim woman as a sex-subject, submissive, and maudlin character, confining her vision of the Other to the boundaries of her cocooned self, epitomizing a self-centered vision of the world. This reduced vision results in the possibility of viewing the Other as a hindrance to her attaining a clarified and centrifugal representation of the latter, herself, and the outside world. The encounters could also be considered as the character's opportunity for a less stigmatized perception of the elements set forth. The main queries to be probed are: what are the different perceptions of the Other by the author in the narratives set forth? How does the protagonist's encounter with the Other(s) impede her ability to understand the Other, herself, and the world around her? Or how does this encounter allow her an enlightened vision of the aforementioned elements to forge a new start? The possibility of imagining a dialogic relation between different perceptions of the Other opens up new perspectives for adopting magnified representations of the later, oneself, and the world, dilating one's imagination.Keywords: dialogic, female, foreigner, local, male, other, others
Procedia PDF Downloads 1313286 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies
Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming
Abstract:
In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram
Procedia PDF Downloads 4723285 Using the Bootstrap for Problems Statistics
Authors: Brahim Boukabcha, Amar Rebbouh
Abstract:
The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models
Procedia PDF Downloads 3813284 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis
Procedia PDF Downloads 713283 A Meta Regression Analysis to Detect Price Premium Threshold for Eco-Labeled Seafood
Authors: Cristina Giosuè, Federica Biondo, Sergio Vitale
Abstract:
In the last years, the consumers' awareness for environmental concerns has been increasing, and seafood eco-labels are considered as a possible instrument to improve both seafood markets and sustainable fishing management. In this direction, the aim of this study was to carry out a meta-analysis on consumers’ willingness to pay (WTP) for eco-labeled wild seafood, by a meta-regression. Therefore, only papers published on ISI journals were searched on “Web of Knowledge” and “SciVerse Scopus” platforms, using the combinations of the following key words: seafood, ecolabel, eco-label, willingness, WTP and premium. The dataset was built considering: paper’s and survey’s codes, year of publication, first author’s nationality, species’ taxa and family, sample size, survey’s continent and country, data collection (where and how), gender and age of consumers, brand and ΔWTP. From analysis the interest on eco labeled seafood emerged clearly, in particular in developed countries. In general, consumers declared greater willingness to pay than that actually applied for eco-label products, with difference related to taxa and brand.Keywords: eco label, meta regression, seafood, willingness to pay
Procedia PDF Downloads 1223282 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1433281 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios
Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses
Abstract:
While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.Keywords: older drivers, simulation, left-turn, human factors
Procedia PDF Downloads 2483280 Food Intake Pattern and Nutritional Status of Preschool Children of Chakma Ethnic Community
Authors: Md Monoarul Haque
Abstract:
Nutritional status is a sensitive indicator of community health and nutrition among preschool children, especially the prevalence of undernutrition that affects all dimensions of human development and leads to growth faltering in early life. The present study is an attempt to assess the food intake pattern and nutritional status of pre-school Chakma tribe children. It was a cross-sectional community based study. The subjects were selected purposively. This study was conducted at Savar Upazilla of Rangamati. Rangamati is located in the Chittagong Division. Anthropometric data height and weight of the study subjects were collected by standard techniques. Nutritional status was measured using Z score according WHO classification. χ2 test, independent t-test, Pearson’s correlation, multiple regression and logistic regression was performed as P<0.05 level of significance. Statistical analyses were performed by appropriate univariate and multivariate techniques using SPSS windows 11.5. Moderate (-3SD to <-2SD) to severe underweight (<-3SD) were 23.8% and 76.2% study subjects had normal weight for their age. Moderate (-3SD to <-2SD) to severe (<-3SD) stunted children were only 25.6% and 74.4% children were normal and moderate to severe wasting were 14.7% whereas normal child was 85.3%. Significant association had been found between child nutritional status and monthly family income, mother education and occupation of father and mother. Age, sex and incomes of the family, education of mother and occupation of father were significantly associated with WAZ and HAZ of the study subjects (P=0.0001, P=0.025, P=0.001 and P=0.0001, P=0.003, P=0.031, P=0.092, P=0.008). Maximum study subjects took local small fish and some traditional tribal food like bashrool, jhijhipoka and pork very much popular food among tribal children. Energy, carbohydrate and fat intake was significantly associated with HAZ, WAZ, BAZ and MUACZ. This study demonstrates that malnutrition among tribal children in Bangladesh is much better than national scenario in Bangladesh. Significant association was found between child nutritional status and family monthly income, mother education and occupation of father and mother. Most of the study subjects took local small fish and some traditional tribal food. Significant association was also found between child nutritional status and dietary intake of energy, carbohydrate and fat.Keywords: food intake pattern, nutritional status, preschool children, Chakma ethnic community
Procedia PDF Downloads 5053279 The Impact of Artificial Intelligence on Construction Projects
Authors: Muller Salah Zaky Toudry
Abstract:
The complexity arises in defining the development great due to its notion, based on inherent market situations and their requirements, the diverse stakeholders itself and their desired output. An quantitative survey based totally approach was adopted in this optimistic examine. A questionnaire-primarily based survey was performed for the assessment of production fine belief and expectations within the context of excellent development technique. The survey feedback of experts of the leading creation corporations/companies of Pakistan production industry have been analyzed. The monetary ability, organizational shape, and production revel in of the construction companies shaped basis for their selection. The great belief become located to be venture-scope-orientated and taken into consideration as an extra cost for a production assignment. Any excellent improvement technique changed into expected to maximize the profit for the employer, via enhancing the productiveness in a creation project. The look at is beneficial for the construction specialists to evaluate the prevailing creation great perception and the expectations from implementation of any pleasant improvement approach in production projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception client loyalty, NPS, pre-construction, schedule reduction
Procedia PDF Downloads 163278 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 3363277 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder
Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka
Abstract:
The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.Keywords: cytokine, saliva, attention deficit hyperactivity disorder, child
Procedia PDF Downloads 1443276 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 1263275 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris
Authors: Suhani Srivastava
Abstract:
This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa
Procedia PDF Downloads 233274 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 113273 The Cut-Off Value of TG/HDL Ratio of High Pericardial Adipose Tissue
Authors: Nam-Seok Joo, Da-Eun Jung, Beom-Hee Choi
Abstract:
Background and Objectives: Recently, the triglyceride/high-density lipoprotine cholesterol (TG/HDL) ratio and pericardial adipose tissue (PAT) has gained attention as an indicator related to metabolic syndrome (MS). To date, there has been no research on the relationship between TG/HDL and PAT, we aimed to investigate the association between the TG/HDL and PAT. Methods: In this cross-sectional study, we investigated 627 patients who underwent coronary multidetector computed tomography and metabolic parameters. We divided subjects into two groups according to the cut-off PAT volume associated with MS, which is 142.2 cm³, and we compared metabolic parameters between those groups. We divided the TG/HDL ratio into tertiles according to Log(TG/HDL) and compared PAT-related parameters by analysis of variance. Finally, we applied logistic regression analysis to obtain the odds ratio of high PAT (PAT volume≥142.2 cm³) in each tertile, and we performed receiver operating characteristic (ROC) analysis to get the cut-off of TG/HDL ratio according to high PAT. Results: The mean TG/ HDL ratio of the high PAT volume group was 3.6, and TG/ HDL ratio had a strong positive correlation with various metabolic parameters. In addition, in the Log (TG/HDL) tertile groups, the higher tertile had more metabolic derangements, including PAT, and showed higher odds ratios of having high PAT (OR=4.10 in the second tertile group and OR=5.06 in their third tertile group, respectively) after age, sex, smoking adjustments. TG/HDL ratio according to the having increased PAT by ROC curve showed 1.918 (p < 0.001). Conclusion: TG/HDL ratio and high PAT volume have a significant positive correlation, and higher TG/HDL ratio showed high PAT. The cut-off value of the TG/HDL ratio was 1.918 to have a high PAT.Keywords: triglyceride, high-density lipoprotein, pericardial adipose tissue, cut-off value
Procedia PDF Downloads 173272 Prevalence and Characteristics of Torus Palatinus among Western Indonesian Population
Authors: Raka Aldy Nugraha, Kiwah Andanni, Aditya Indra Pratama, Aswin Guntara
Abstract:
Background: Torus palatinus is a bony protuberance in the hard palate. Sex and race are considered as influencing factors for the development of torus palatinus. Hence, the objective of this study was to determine the prevalence and characteristics of torus palatinus and its correlation with sex and ethnicity among Western Indonesian Population. Methods: We conducted a descriptive and analytical study employing cross-sectional design in 274 new students of Universitas Indonesia. Data were collected by using consecutive sampling method through questionnaire-filling and direct oral examination. Subject with racial background other than indigenous Indonesian Mongol were excluded from this study. Data were statistically analyzed using chi square test for categorical variables whereas logistic regression model was employed to assess the correlation between variables of interest with prevalence of torus palatinus. Results: Torus palatinus were found in 212 subjects (77.4%), mostly small in size (< 3 mm) and single in number, with percentage of 50.5% and 90.6%, respectively. The prevalence of torus palatinus were significantly higher in women (OR 2.88; 95% CI: 1.53-5.39; p = 0.001), dominated by medium-sized and single tori. There was no significant correlation between ethnicity and the occurrence of torus palatinus among Western Indonesian population. Conclusion: Torus palatinus was prevalent among Western Indonesian population. It showed significant positive correlation with sex, but not with ethnicity.Keywords: characteristic, ethnicity, Indonesia, mongoloid, prevalence, sex, Torus palatinus
Procedia PDF Downloads 2683271 Examining Motivational Strategies of Foreign Manufacturing Firms in Ghana
Authors: Samuel Ato Dadzie
Abstract:
The objective of this study is to examine the influence of eclectic paradigm on motivational strategy of foreign subsidiaries in Ghana. This study uses binary regression model, and the analysis was based on 75 manufacturing investments made by MNEs from different countries in 1994–2008. The results indicated that perceived market size increases the probability of foreign firms undertaking a market seeking (MS) in Ghana, while perceived cultural distance between Ghana and foreign firm’s home countries decreased the probability of foreign firms undertaking an market seeking (MS) foreign direct investment (FDI) in Ghana. Furthermore, extensive international experience decreases the probability of foreign firms undertaking a market seeking (MS) foreign direct investment (FDI) in Ghana. Most of the studies done by earlier researchers were based on the advanced and emerging countries and offered support for the theory, which was used in generalizing the result that multinational corporations (MNCs) normally used the theory regarding investment strategy outside their home country. In using the same theory in the context of Ghana, the result does not offer strong support for the theory. This means that MNCs that come to Sub-Sahara Africa cannot rely much on eclectic paradigm for their motivational strategies because prevailing economic conditions in Ghana are different from that of the advanced and emerging economies where the institutional structures work.Keywords: foreign subsidiary, motives, Ghana, foreign direct investment
Procedia PDF Downloads 4333270 Genetic and Non-Genetic Factors Affecting the Response to Clopidogrel Therapy
Authors: Snezana Mugosa, Zoran Todorovic, Zoran Bukumiric, Ivan Radosavljevic, Natasa Djordjevic
Abstract:
Introduction: Various studies have shown that the frequency of clopidogrel resistance ranges from 4-40%. The aim of this study was to provide in depth analysis of genetic and non-genetic factors that influence clopidogrel resistance in cardiology patients. Methods: We have conducted a prospective study in 200 hospitalized patients hospitalized at Cardiology Centre of the Clinical Centre of Montenegro. CYP2C19 genetic testing was conducted, and the PREDICT score was calculated in 102 out of 200 patients treated with clopidogrel in order to determine the influence of genetic and non-genetic factors on outcomes of interest. Adverse cardiovascular events and adverse reactions to clopidogrel were assessed during 12 months follow up period. Results: PREDICT score and CYP2C19 enzymatic activity were found to be statistically significant predictors of expressing lack of therapeutic efficacy of clopidogrel by multivariate logistic regression, without multicollinearity or interaction between the predictors (p = 0.002 and 0.009, respectively). Conclusions: Pharmacogenetics analyses that were done in the Montenegrin population of patients for the first time suggest that these analyses can predict patient response to the certain therapy. Stepwise approach could be used in assessing the clopidogrel resistance in cardiology patients, combining the PREDICT score, platelet aggregation test, and genetic testing for CYP2C19 polymorphism.Keywords: clopidogrel, pharmacogenetics, pharmacotherapy, PREDICT score
Procedia PDF Downloads 3513269 Socio-Economic Factors Influencing the Use of Coping Strategies among Conflict Actors (Farmers and Herders) in Giron Masa Village, Kebbi State, Nigeria
Authors: S. Umar, B. F. Umar
Abstract:
This study was conducted at Giron Masa village, located 30 km from Yauri town. The study determines the socio-economic factors influencing the use of coping strategies among farmers and herders during post-conflict situation. Simple random sampling was employed to select one hundred respondents (50 farmers and 50 herders) from the study area. Logistic regression analysis (LR) was used to ascertain the socioeconomic variables that influenced the use of the coping strategies. The results of the study shows that age, income, family size and farming experience were individually significant and thus influenced the use of POCS by farmers. Annual income and production system influenced the use of POCS by herders. Age, farm size and farming experience were found to be individually significant in influencing the use of EOCS among farmers. Specifically, years of occupation experience among the herders increased the use of emotion oriented coping strategies among herders. The use of SSCS among farmers was influenced by educational level; farm size and farming experience, while the variables are not collectively significant in influencing the use of SSCS among the herders. The research recommends a need to adopt the strategy of community coping to cope with stress.Keywords: farmers, herders, conflict, coping strategies
Procedia PDF Downloads 3743268 The Mobilizing Role of Moral Obligation and Collective Action Frames in Two Types of Protest
Authors: Monica Alzate, Marcos Dono, Jose Manuel Sabucedo
Abstract:
As long as collective action and its predictors constitute a big body of work in the field of political psychology, context-dependent studies and moral variables are a relatively new issue. The main goal of this presentation is to examine the differences in the predictors of collective action when taking into account two different types of protest, and also focus on the role of moral obligation as a predictor of collective action. To do so, we sampled both protesters and non-protesters from two mobilizations (N=376; N=563) of different nature (catalan Independence, and an 'indignados' march) and performed a logistic regression and a 2x2 MANOVA analysis. Results showed that the predictive variables that were more discriminative between protesters and non-protesters were identity, injustice, efficacy and moral obligation for the catalan Diada and injustice and moral obligation for the 'indignados'. Also while the catalans scored higher in the identification and efficacy variables, the indignados did so in injustice and moral obligation. Differences are evidenced between two types of collective action that coexist within the same protest cycle. The frames of injustice and moral obligation gain strength in the post-2010 mobilizations, a fact probably associated with the combination of materialist and post-materialist values that distinguish the movement. All of this emphasizes the need of studying protest from a contextual point of view. Besides, moral obligation emerges as key predictor of collective action engagement.Keywords: collective action, identity, moral obligation, protest
Procedia PDF Downloads 3323267 An Overbooking Model for Car Rental Service with Different Types of Cars
Authors: Naragain Phumchusri, Kittitach Pongpairoj
Abstract:
Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.Keywords: overbooking, car rental industry, revenue management, stochastic model
Procedia PDF Downloads 1723266 Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Babak Nemat
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2023, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to exercise in future research.Keywords: social support, regulation, infertility, women
Procedia PDF Downloads 633265 Secure Message Transmission Using Meaningful Shares
Authors: Ajish Sreedharan
Abstract:
Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image
Procedia PDF Downloads 4553264 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis
Procedia PDF Downloads 177