Search results for: lightweight materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7125

Search results for: lightweight materials

585 Assessment of Agricultural Intervention on Ecosystem Services in the Central-South Zone of Chile

Authors: Steven Hidalgo, Patricio Neumann

Abstract:

The growth of societies has increased the consumption of raw materials and food obtained from nature. This has influenced the services offered by ecosystems to humans, mainly supply and regulation services. One of the indicators used to evaluate these services is Net Primary Productivity (NPP), which is understood as the energy stored in the form of biomass by primary organisms through the process of photosynthesis and respiration. The variation of NPP by defined area produces changes in the properties of terrestrial and aquatic ecosystems, which alter factors such as biodiversity, nutrient cycling, carbon storage and water quality. The analysis of NPP to evaluate variations in ecosystem services includes harvested NPP (understood as provisioning services), which is the raw material from agricultural systems used by humans as a source of energy and food, and the remaining NPP (expressed as a regulating service) or the amount of biomass that remains in ecosystems after the harvesting process, which is mainly related to factors such as biodiversity. Given that agriculture is a fundamental pillar of Chile's integral development, the purpose of this study is to evaluate provisioning and regulating ecosystem services in the agricultural sector, specifically in cereal production, in the communes of the central-southern regions of Chile through a conceptual framework based on the quantification of the fraction of Human Appropriation of Net Primary Productivity (HANPP) and the fraction remaining in the ecosystems (NPP remaining). A total of 161 communes were analyzed in the regions of O'Higgins, Maule, Ñuble, Bio-Bío, La Araucanía and Los Lagos, which are characterized by having the largest areas planted with cereals. It was observed that the region of La Araucanía produces the greatest amount of dry matter, understood as provisioning service, where Victoria is the commune with the highest cereal production in the country. In addition, the maximum value of HANPP was in the O'Higgins region, highlighting the communes of Coltauco, Quinta de Tilcoco, Placilla and Rengo. On the other hand, the communes of Futrono, Pinto, Lago Ranco and Pemuco, whose cereal production was important during the study, had the highest values of remaining NPP as a regulating service. Finally, an inverse correlation was observed between the provisioning and regulating ecosystem services, i.e., the higher the cereal or dry matter production in a defined area, the lower the net primary production remaining in the ecosystems. Based on this study, future research will focus on the evaluation of ecosystem services associated with other crops, such as forestry plantations, whose activity is an important part of the country's productive sector.

Keywords: provisioning services, regulating services, net primary productivity, agriculture

Procedia PDF Downloads 100
584 From Battles to Balance and Back: Document Analysis of EU Copyright in the Digital Era

Authors: Anette Alén

Abstract:

Intellectual property (IP) regimes have traditionally been designed to integrate various conflicting elements stemming from private entitlement and the public good. In IP laws and regulations, this design takes the form of specific uses of protected subject-matter without the right-holder’s consent, or exhaustion of exclusive rights upon market release, and the like. More recently, the pursuit of ‘balance’ has gained ground in the conceptualization of these conflicting elements both in terms of IP law and related policy. This can be seen, for example, in European Union (EU) copyright regime, where ‘balance’ has become a key element in argumentation, backed up by fundamental rights reasoning. This development also entails an ever-expanding dialogue between the IP regime and the constitutional safeguards for property, free speech, and privacy, among others. This study analyses the concept of ‘balance’ in EU copyright law: the research task is to examine the contents of the concept of ‘balance’ and the way it is operationalized and pursued, thereby producing new knowledge on the role and manifestations of ‘balance’ in recent copyright case law and regulatory instruments in the EU. The study discusses two particular pieces of legislation, the EU Digital Single Market (DSM) Copyright Directive (EU) 2019/790 and the finalized EU Artificial Intelligence (AI) Act, including some of the key preparatory materials, as well as EU Court of Justice (CJEU) case law pertaining to copyright in the digital era. The material is examined by means of document analysis, mapping the ways ‘balance’ is approached and conceptualized in the documents. Similarly, the interaction of fundamental rights as part of the balancing act is also analyzed. Doctrinal study of law is also employed in the analysis of legal sources. This study suggests that the pursuit of balance is, for its part, conducive to new battles, largely due to the advancement of digitalization and more recent developments in artificial intelligence. Indeed, the ‘balancing act’ rather presents itself as a way to bypass or even solidify some of the conflicting interests in a complex global digital economy. Indeed, such a conceptualization, especially when accompanied by non-critical or strategically driven fundamental rights argumentation, runs counter to the genuine acknowledgment of new types of conflicting interests in the copyright regime. Therefore, a more radical approach, including critical analysis of the normative basis and fundamental rights implications of the concept of ‘balance’, is required to readjust copyright law and regulations for the digital era. Notwithstanding the focus on executing the study in the context of the EU copyright regime, the results bear wider significance for the digital economy, especially due to the platform liability regime in the DSM Directive and with the AI Act including objectives of a ‘level playing field’ whereby compliance with EU copyright rules seems to be expected among system providers.

Keywords: balance, copyright, fundamental rights, platform liability, artificial intelligence

Procedia PDF Downloads 32
583 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 212
582 Communicative Competence Is About Speaking a Lot: Teacher’s Voice on the Art of Developing Communicative Competence

Authors: Bernice Badal

Abstract:

The South African English curriculum emphasizes the adoption of the Communicative Approach (CA) using Communicative Language Teaching (CLT) methodologies to develop English as a second language (ESL) learners’ communicative competence in contexts such as township schools in South Africa. However, studies indicate that the adoption of the approach largely remains a rhetoric. Poor English language proficiency among learners and poor student performance, which continues from the secondary to the tertiary phase, is widely attributed to a lack of English language proficiency in South Africa. Consequently, this qualitative study, using a mix of classroom observations and interviews, sought to investigate teacher knowledge of Communicative Competence and the methods and strategies ESL teachers used to develop their learners’ communicative competence. The success of learners’ ability to develop communicative competence in contexts such as township schools in South Africa is inseparable from materials, tasks, teacher knowledge and how they implement the approach in the classrooms. Accordingly, teacher knowledge of the theory and practical implications of the CLT approach is imperative for the negotiation of meaning and appropriate use of language in context in resource-impoverished areas like the township. Using a mix of interviews and observations as data sources, this qualitative study examined teachers’ definitions and knowledge of Communicative competence with a focus on how it influenced their classroom practices. The findings revealed that teachers were not familiar with the notion of communicative competence, the communication process, and the underpinnings of CLT. Teachers’ narratives indicated an awareness that there should be interactions and communication in the classroom, but a lack of theoretical understanding of the types of communication necessary scuttled their initiatives. Thus, conceptual deficiency influences teachers’ practices as they engage in classroom activities in a superficial manner or focus on stipulated learner activities prescribed by the CAPS document. This study, therefore, concluded that partial or limited conceptual and coherent understandings with ‘teacher-proof’ stipulations for classroom practice do not inspire teacher efficacy and mastery of prescribed approaches; thus, more efforts should be made by the Department of Basic Education to strengthen the existing Professional Development workshops to support teachers in improving their understandings and application of CLT for the development of Communicative competence in their learners. The findings of the study contribute to the field of teacher knowledge acquisition, teacher beliefs and practices and professional development in the context of second language teaching and learning with a recommendation that frameworks for the development of communicative competence with wider applicability in resource-poor environments be developed to support teacher understanding and application in classrooms.

Keywords: communicative competence, CLT, conceptual understanding of reforms, professional development

Procedia PDF Downloads 60
581 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 79
580 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 255
579 Caregivers Burden: Risk and Related Psychological Factors in Caregivers of Patients with Parkinson’s Disease

Authors: Pellecchia M. T., Savarese G., Carpinelli L., Calabrese M.

Abstract:

Introduction: Parkinson's disease (PD) is characterized by a progressive loss of autonomy which undoubtedly has a significant impact on the quality of life of caregivers, and parents are the main informal caregivers. Caring for a person with PD is associated with an increased risk of psychiatric morbidity and persistent anxiety-depressive distress. The aim of the study is to investigate the burden on caregivers of patients with PD, through the use of multidimensional scales and to identify their personological and environmental determinants. Methods: The study has been approved by the Ethic Committee of the University of Salerno and informed consent for participation to the study was obtained from patients and their caregivers. The study was conducted at the Neurology Department of the A.O.U. "San Giovanni di Dio and Ruggi D’Aragona" of Salerno between September 2020 and May 2021. Materials: The questionnaires used were: a) Caregiver Burden Inventory - CBI a questionnaire of 24 items that allow identifying five sub-categories of burden (objective, psychological, physical, social, emotional); b) Depression Anxiety Stress Scales Short Version - DASS-21 questionnaire consisting of 21 items and valid in examining three distinct but interrelated areas (depression, anxiety and stress); c) Family Strain Questionnaire Short Form - FSQ-SF is a questionnaire of 30 items grouped in areas of increasing psychological risk (OK, R, SR, U); d) Zarit Caregiver Burden Inventory - ZBI, consisting of 22 items based on the analysis of two main factors: personal stress and pressure related to his role; e) Life Satisfaction, a single item that aims to evaluate the degree of life satisfaction in a global way using a 0-100 Likert scale. Findings: N ° 29 caregivers (M age = 55.14, SD = 9.859; 69% F) participated in the study. 20.6% of the sample had severe and severe burden (CBI score = M = 26.31; SD = 22.43) and 13.8% of participants had moderate to severe burden (ZBI). The FSQ-SF highlighted a minority of caregivers who need psychological support, in some cases urgent (Area SR and Area U). The DASS-21 results show a prevalence of stress-related symptoms (M = 10.90, SD = 10.712) compared to anxiety (M = 7.52, SD = 10.752) and depression (M = 8, SD = 10.876). There are significant correlations between some specific variables and mean test scores: retired caregivers report higher ZBI scores (p = 0.423) and lower Life Satisfaction levels (p = -0.460) than working caregivers; years of schooling show a negative linear correlation with the ZBI score (p = -0.491). The T-Test indicates that caregivers of patients with cognitive impairment are at greater risk than those of patients without cognitive impairment. Conclusions: It knows the factors that affect the burden the most would allow for early recognition of risky situations and caregivers who would need adequate support.

Keywords: anxious-depressive axis, caregivers’ burden, Parkinson’ disease, psychological risks

Procedia PDF Downloads 216
578 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 65
577 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 186
576 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 166
575 Traditional Medicine and Islamic Holistic Approach in Palliative Care Management of Terminal Illpatient of Cancer

Authors: Mohammed Khalil Ur Rahman, Mohammed Alsharon, Arshad Muktar, Zahid Shaik

Abstract:

Any ailment can go into terminal stages, cancer being one such disease which is many times detected in latent stages. Cancer is often characterized by constitutional symptoms which are agonizing in nature which disturbs patients and their family as well. In order to relieve such intolerable symptoms treatment modality employed is known to be ‘Palliative Care’. The goal of palliative care is to enhance patient’s quality of life by relieving or rather reducing the distressing symptoms of patients such as pain, nausea/ vomiting, anorexia/loss of appetite, excessive salivation, mouth ulcers, weight loss, constipation, oral thrush, emaciation etc. which are due to the effect of disease or due to the undergoing treatment such as chemotherapy, radiation etc. Ayurveda and Unani as well as other traditional medicines is getting more and more international attention in recent years and Ayurveda and Unani holistic perspective of the disease, it seems that there are many herbs and herbomineral preparation which can be employed in the treatment of malignancy and also in palliative care. Though many of them have yet to be scientifically proved as anti-cancerous but there is definitely a positive lead that some of these medications relieve the agonising symptoms thereby making life of the patient easy. Health is viewed in Islam in a holistic way. One of the names of the Quran is al-shifa' meaning ‘that which heals’ or ‘the restorer of health’ to refer to spiritual, intellectual, psychological, and physical health. The general aim of medical science, according to Islam, is to secure and adopt suitable measures which, with Allah’s permission, help to preserve or restore the health of the human body. Islam motivates the Physician to view the patient as one organism. The patient has physical, social, psychological, and spiritual dimensions that must be considered in synthesis with an integrated, holistic approach. Aims & Objectives: - To suggest herbs which are mentioned in Ayurveda Unani with potential palliative activity in case of Cancer patients. - Most of tibb nabawi [Prophetic Medicine] is preventive medicine and must have been divinely inspired. - Spiritual Aspects of Healing: Prayer, dua, recitation of the Quran - Remembrance of Allah play a central role.Materials & Method: Literary review of the herbs supported with experiential evidence will be discussed. Discussion: On the basis of collected data subject will be discussed in length. Conclusion: Will be presented in paper.

Keywords: palliative care, holistic, Ayurvedic and Unani traditional system of medicine, Quran, hadith

Procedia PDF Downloads 341
574 Working Towards More Sustainable Food Waste: A Circularity Perspective

Authors: Rocío González-Sánchez, Sara Alonso-Muñoz

Abstract:

Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.

Keywords: bibliometric analysis, circular economy, food waste management, future research lines

Procedia PDF Downloads 113
573 Preservation and Promotion of Lao Traditional Food as Luangprabang Province Unique Culture and Tradition in Accordance With One District One Product Policy

Authors: Lamphong Volady

Abstract:

The primary purpose of this study was to explore the traditional cuisine (local food) of Luangprabang Province in line with the Lao PDR’s One District One Product Policy. Another purpose of the study was to examine channels used to present local food, reasons to preserve and promote local food, as well as local food preservation and promotion strategies. It also aimed at testing correlation hypotheses whether there is a statistically significant relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines, attractiveness to consume local food, preservation and promotion of local food problems, and local people’s occupations. The Convergent Parallel Mixed Methods were employed in this study. The results of the study showed that several local cuisines were found to be local food of Luangprabang Province, namely Jeow Bon (Chilli dipping suace), Or Lam or aw lahm (stew buffalo skin, herbs, Mai sakaan), Kai Pan (River Weed Dry), Tam Mak Houng Luangprabang (Papaya Salad), Nang (Yam Buffalo Skin Dry), Sai Oor (Sausage), Laap Sin Koay Sai Mar-Keua Pao (Beef Salad with Roasted Eggplants), Orm Born (Taro leaves Stew), Oor Nor Mai (Bamboo Shoot Sausage), Jeow Nam Poo (Pickled Crab Chillies), Mok Dok Kae (steaming or roasting a Dok Kae Wrapp), Nor Sa Wan, Kao Noom Kee Noo, Kao Noom Ba Bin. It also depicted that YouTube, Facebook, and TikTok were multiple social channels or platforms which were found to be used to introduce traditional food as well as television, smartphone, word of mouth, Lao food fairs and other provincial events. The study also found that local food should be preserved and promoted since traditional food is not only ancestral, ancient, traditional, and local cuisines, but it is also wisdom, unique, and national cuisine. The study also found that people feel attracted to consuming local food because local food is delicious, unique, clean, nutritious, non-contaminated and natural. The study showed that lack of funds to produce local food, inadequate draw materials, lack material to store products, insufficient place to produce and lack of related organizations engagement were found to be problems for preserving and promoting traditional food. Finally, the result of the study revealed that there is a statistically significant weak relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines (R²= 4.5%), (p-value <0.001). There is a statistically significant moderate relationship between enjoyment of having local food and attractiveness to consume local food (R²= 7.8%), (p-value <0.001). However, there is a statistically insignificant relationship between enjoyment of having local food and preservation and promotion of local food problems (R²= 1.8%), (p-value = 0.086). It was found that there is a statistically insignificant relationship between enjoyment of having local food and local people’s occupations (R²= 0.0%), (p-value = 0.929).

Keywords: local food, preservation, promotion, traditional food, cuisines

Procedia PDF Downloads 79
572 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 183
571 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 119
570 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 185
569 Comfort Evaluation of Summer Knitted Clothes of Tencel and Cotton Fabrics

Authors: Mona Mohamed Shawkt Ragab, Heba Mohamed Darwish

Abstract:

Context: Comfort properties of garments are crucial for the wearer, and with the increasing demand for cotton fabric, there is a need to explore alternative fabrics that can offer similar or superior comfort properties. This study focuses on comparing the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the aim of identifying fabrics that are more suitable for summer clothes. Research Aim: The aim of this study is to evaluate the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the goal of identifying fabrics that can serve as alternatives to cotton, considering their comfort properties for summer clothing. Methodology: An experimental, analytical approach was employed in this study. Two circular knitting machines were used to produce the fabrics, one with a 24 inches gauge and the other with a 28 inches gauge. Both fabrics were knitted with three different loop lengths (3.05 mm, 2.9 mm, and 2.6 mm) to obtain loose, medium, and tight fabrics for evaluation. Various comfort properties, including air permeability, water vapor permeability, wickability, and thermal resistance, were measured for both fabric types. Findings: The study found a significant difference in comfort properties between tencel/cotton single jersey fabric and cotton single jersey fabric. Tencel/cotton fabric exhibited higher air permeability, water vapor permeability, and wickability compared to cotton fabric. These findings suggest that tencel fabric is more suitable for summer clothes due to its superior ventilation and absorption properties. Theoretical Importance: This study contributes to the exploration of alternative fabrics to cotton by evaluating their comfort properties. By identifying fabrics that offer better comfort properties than cotton, particularly in terms of water usage, the study provides valuable insights into sustainable fabric choices for the fashion industry. Data Collection and Analysis Procedures: The comfort properties of the fabrics were measured using appropriate testing methods. Paired comparison t-tests were conducted to determine the significant differences between tencel/cotton fabric and cotton fabric in the measured properties. Correlation coefficients were also calculated to examine the relationships between the factors under study. Question Addressed: The study addresses the question of whether tencel/cotton single jersey fabric can serve as an alternative to cotton fabric for summer clothes, considering their comfort properties. Conclusion: The study concludes that tencel/cotton single jersey fabric offers superior comfort properties compared to cotton single jersey fabric, making it a suitable alternative for summer clothes. The findings also highlight the importance of considering fabric properties, such as air permeability, water vapor permeability, and wickability, when selecting materials for garments to enhance wearer comfort. This research contributes to the search for sustainable alternatives to cotton and provides valuable insights for the fashion industry in making informed fabric choices.

Keywords: comfort properties, cotton fabric, tencel fabric, single jersey

Procedia PDF Downloads 76
568 Blood Microbiome in Different Metabolic Types of Obesity

Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Dilyara R. Khusnutdinova, Dilyara R. Kamaldinova, Alexander V. Shestopalov

Abstract:

Background. Obese patients have unequal risks of metabolic disorders. It is accepted to distinguish between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). MUHO patients have a high risk of metabolic disorders, insulin resistance, and diabetes mellitus. Among the other things, the gut microbiota also contributes to the development of metabolic disorders in obesity. Obesity is accompanied by significant changes in the gut microbial community. In turn, bacterial translocation from the intestine is the basis for the blood microbiome formation. The aim was to study the features of the blood microbiome in patients with various metabolic types of obesity. Patients, materials, methods. The study included 116 healthy donors and 101 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=36) and MUHO (n=53). Quantitative and qualitative assessment of the blood microbiome was based on metagenomic analysis. Blood samples were used to isolate DNA and perform sequencing of the variable v3-v4 region of the 16S rRNA gene. Alpha diversity indices (Simpson index, Shannon index, Chao1 index, phylogenetic diversity, the number of observed operational taxonomic units) were calculated. Moreover, we compared taxa (phyla, classes, orders, and families) in terms of isolation frequency and the taxon share in the total bacterial DNA pool between different patient groups. Results. In patients with MHO, the characteristics of the alpha-diversity of the blood microbiome were like those of healthy donors. However, MUHO was associated with an increase in all diversity indices. The main phyla of the blood microbiome were Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Cyanobacteria, TM7, Thermi, Verrucomicrobia, Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Tenericutes were found to be less significant phyla of the blood microbiome. Phyla Acidobacteria, TM7, and Verrucomicrobia were more often isolated in blood samples of patients with MUHO compared with healthy donors. Obese patients had a decrease in some taxonomic ranks (Bacilli, Caulobacteraceae, Barnesiellaceae, Rikenellaceae, Williamsiaceae). These changes appear to be related to the increased diversity of the blood microbiome observed in obesity. An increase of Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, and S24-7 was noted for MUHO patients, which, apparently, is explained by a magnification in intestinal permeability. Conclusion. Blood microbiome differs in obese patients and healthy donors at class, order, and family levels. Moreover, the nature of the changes is determined by the metabolic type of obesity. MUHO linked to increased diversity of the blood microbiome. This appears to be due to increased microbial translocation from the intestine and non-intestinal sources.

Keywords: blood microbiome, blood bacterial DNA, obesity, metabolically healthy obesity, metabolically unhealthy obesity

Procedia PDF Downloads 164
567 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 271
566 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc

Abstract:

Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, friction, process

Procedia PDF Downloads 147
565 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
564 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance

Authors: Giorgia Carratta

Abstract:

Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.

Keywords: environmental law, European union, governance, plastic pollution, sustainability

Procedia PDF Downloads 109
563 Spare Part Carbon Footprint Reduction with Reman Applications

Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş

Abstract:

Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.

Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability

Procedia PDF Downloads 82
562 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety

Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.

Keywords: food safety, microbes, antimicrobial, fatty acid salts

Procedia PDF Downloads 486
561 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 680
560 Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis

Authors: G. V. Manzane, S. J. Modise

Abstract:

Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies.

Keywords: uterine fibroids, african medicinal plants, bioactive compounds, identify and characterized

Procedia PDF Downloads 103
559 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 136
558 Preliminary Analysis on the Distribution of Elements in Cannabis

Authors: E. Zafeiraki, P. Nisianakis, K. Machera

Abstract:

Cannabis plant contains 113 cannabinoids and it is commonly known for its psychoactive substance tetrahydrocannabinol or as a source of narcotic substances. The recent years’ cannabis cultivation also increases due to its wide use both for medical and industrial purposes as well as for uses as para-pharmaceuticals, cosmetics and food commodities. Depending on the final product, different parts of the plant are utilized, with the leaves and bud (seeds) being the most frequently used. Cannabis can accumulate various contaminants, including heavy metals, both from the soil and the water in which the plant grows. More specifically, metals may occur naturally in the soil and water, or they can enter into the environment through fertilizers, pesticides and fungicides that are commonly applied to crops. The high probability of metals accumulation in cannabis, combined with the latter growing use, raise concerns about the potential health effects in humans and consequently lead to the need for the implementation of safety measures for cannabis products, such as guidelines for regulating contaminants, including metals, and especially the ones characterized by high toxicity in cannabis. Acknowledging the above, the aim of the current study was first to investigate metals contamination in cannabis samples collected from Greece, and secondly to examine potential differences in metals accumulation among the different parts of the plant. To our best knowledge, this is the first study presenting information on elements in cannabis cultivated in Greece, and also on the distribution pattern of the former in the plant body. To this end, the leaves and the seeds of all the samples were initially separated and dried and then digested with Nitric acid (HNO₃) and Hydrochloric acid (HCl). For the analysis of these samples, an Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) method was developed, able to quantify 28 elements. Internal standards were added at a constant rate and concentration to all calibration standards and unknown samples, while two certified reference materials were analyzed in every batch to ensure the accuracy of the measurements. The repeatability of the method and the background contamination were controlled by the analysis of quality control (QC) standards and blank samples in every sequence, respectively. According to the results, essential metals, such as Ca, Zn and Mg, were detected at high levels. On the contrary, the concentration of high toxicity metals, like As (average: 0.10ppm), Pb (average: 0.36ppm), Cd (average: 0.04ppm), and Hg (average: 0.012ppm) were very low in all the samples, indicating that no harmful effects on human health can be caused by the analyzed samples. Moreover, it appears that the pattern of contamination of metals is very similar in all the analyzed samples, which could be attributed to the same origin of the analyzed cannabis, i.e., the common soil composition, use of fertilizers, pesticides, etc. Finally, as far as the distribution pattern between the different parts of the plant is concerned, it was revealed that leaves present a higher concentration in comparison to seeds for all metals examined.

Keywords: cannabis, heavy metals, ICP-MS, leaves and seeds, elements

Procedia PDF Downloads 101
557 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 203
556 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 324