Search results for: space production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10665

Search results for: space production

4155 Awareness of Genetically Modified Products Among Malaysian Consumers

Authors: Muhamad Afiq Faisal, Yahaya, Mohd Faizal, Hamzah

Abstract:

Genetic modification technology allows scientists to alter the genetic information of a particular organism. The technology allows the production of genetically modified organism (GMO) that has the enhanced property compared to the unmodified organism. The application of such technology is not only in agriculture industry, it is now has been applied extensively in biopharmaceutical industry such as transgenic vaccines. In Malaysia, Biosafety Act 2007 has been enacted in which all GMO-based products must be labeled with adequate information before being marketed. This paper aims to determine the awareness level amongst Malaysian consumers on the GM products available in the market and the efficiency of information supplied in the GM product labeling. The result of the survey will serve as a guideline for Malaysia government agency bodies to provide comprehensive yet efficient information to consumers for the purpose of GM product labeling in the near future. In conclusion, the efficiency of information delivery plays a vital role in ensuring that the information is being conveyed clearly to Malaysian consumers during the selection process of GM products available in the market.

Keywords: genetic modification technology, genetically modified organisms, genetically modified organism products labeling, Biosafety Act 2007

Procedia PDF Downloads 343
4154 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 354
4153 Increasing Sustainability Using the Potential of Urban Rivers in Developing Countries with a Biophilic Design Approach

Authors: Mohammad Reza Mohammadian, Dariush Sattarzadeh, Mir Mohammad Javad Poor Hadi Hosseini

Abstract:

Population growth, urban development and urban buildup have disturbed the balance between the nature and the city, and so leading to the loss of quality of sustainability of proximity to rivers. While in the past, the sides of urban rivers were considered as urban green space. Urban rivers and their sides that have environmental, social and economic values are important to achieve sustainable development. So far, efforts have been made at various scales in various cities around the world to revitalize these areas. On the other hand, biophilic design is an innovative design approach in which attention to natural details and relation to nature is a fundamental concept. The purpose of this study is to provide an integrated framework of urban design using the potential of urban rivers (in order to increase sustainability) with a biophilic design approach to be used in cities in developing countries. The methodology of the research is based on the collection of data and information from research and projects including a study on biophilic design, investigations and projects related to the urban rivers, and a review of the literature on sustainable urban development. Then studying the boundary of urban rivers is completed by examining case samples. Eventually, integrated framework of urban design, to design the boundaries of urban rivers in the cities of developing countries is presented regarding the factors affecting the design of these areas. The result shows that according to this framework, the potential of the river banks is utilized to increase not only the environmental sustainability but also social, economic and physical stability with regard to water, light, and the usage of indigenous materials, etc.

Keywords: urban rivers, biophilic design, urban sustainability, nature

Procedia PDF Downloads 263
4152 Effect of Powder Shape on Physical Properties of Porous Coatings

Authors: M. Moayeri, A. Kaflou

Abstract:

Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.

Keywords: porous coat, permeability, mechanical strength, porosity

Procedia PDF Downloads 343
4151 Effects of Planned Pre-laboratory Discussion on Physics Students’ Acquisition of Science Process Skills in Kontagora, Niger State

Authors: Akano Benedict Ubawuike

Abstract:

This study investigated the effects of pre-laboratory discussion on physics students’ acquisition of science process skills. The study design was quasi-experimental and purposive sampling technique was applied in selecting two schools in Kontagora Town for the research based on the availability of a good physics laboratory. Intact classes already grouped by the school for the sake of small laboratory space and equipment, comprising Thirty (30) students, 15 for experimental group in School A and 15 for control in school B were the subjects for the research. The instrument used for data collection was the lesson prepared for pre – practical discussion and researcher made Science Process Skill Test (SPST ) and two (2) research questions, and two (2) research hypotheses were developed to guide the study. The data collected were analyzed using means and t-Test statistics at 0.05 level of significance. The study revealed that pre-laboratory discussion was found to be more efficacious in enhancing students’ acquisition of science process skills. It also revealed that gender, had no significant effect on students’ acquisition of science process skills. Based on the findings, it was recommended among others that teachers should encourage students to develop interest in practical activities by engaging them in pre-laboratory discussion and providing instructional materials that will challenge them to be actively involved during practical lessons. It is also recommended that Ministries of Education and professional organizations like Science Teachers' Association of Nigeria (STAN) should organize workshops, seminars and conferences for physics teachers and Physics concepts should be taught with practical activity so that the students will do science instead of learning about science.

Keywords: physics, laboratory, discussion, students, acquisition, science process skills

Procedia PDF Downloads 109
4150 Co-Liquefaction of Cellulosic Biomass and Waste Plastics

Authors: Katsumi Hirano, Yusuke Kakuta, Koji Yoshida, Shozo Itagaki, Masahiko Kajioka, Toshihiko Okada

Abstract:

A conversion technology of cellulosic biomass and waste plastics to liquid fuel at low pressure and low temperature has been investigated. This study aims at the production of the liquefied fuel (CPLF) of substituting diesel oil by mixing cellulosic biomass and waste plastics in the presence of solvent. Co-liquefaction of cellulosic biomass (Japan cedar) and polypropylene (PP) using wood tar or mineral oil as solvent at 673K with an autoclave was carried out. It was confirmed that the co-liquefaction gave CPLF in a high yield among the cases of wood or of polypropylene Which was ascribed the acceleration of decomposition of plastics by radicals derived from the decomposition of wood. The co-liquefaction was also conducted by a small twin screw extruder. It was found that CPLF was obtained in the co-liquefaction, And the acceleration of decomposition of plastics in the presence of cellulosic biomass. The engine test of CPLF showed that the engine performances, Compression ignition and combustion characteristics were almost similar to those of diesel fuel at any mixing ratio of CPLF and any load, Therefore, CPLF could be practically used as alternative fuel for diesel engines.

Keywords: Cellulosic Biomass, Co-liquefaction, Solvent, Waste Plastics

Procedia PDF Downloads 357
4149 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 344
4148 Green Chemical Processing in the Teaching Laboratory: A Convenient Solvent Free Microwave Extraction of Natural Products

Authors: Mohamed Amine Ferhat, Mohamed Nadjib Bouhatem, Farid Chemat

Abstract:

One of the principal aims of sustainable and green processing development remains the dissemination and teaching of green chemistry to both developed and developing nations. This paper describes one attempt to show that “north-south” collaborations yield innovative sustainable and green technologies which give major benefits for both nations. In this paper we present early results from a solvent free microwave extraction (SFME) of essential oils using fresh orange peel, a byproduct in the production of orange juice. SFME is performed at atmospheric pressure without added any solvent or water. SFME increases essential oil yield and eliminate wastewater treatment. The procedure is appropriate for the teaching laboratory, and allows the students to learn extraction, chromatographic and spectroscopic analysis skills, and are expose to dramatic visual example of rapid, sustainable and green extraction of essential oil, and are introduced to commercially successful sustainable and green chemical processing with microwave energy.

Keywords: essential oil, extraction, green processing, microwave

Procedia PDF Downloads 524
4147 Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure

Authors: Vaclav Novak, Katerina Krizova, Petr Sarec

Abstract:

Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant.

Keywords: field experiment, implement draft, vegetation index, sugar beet

Procedia PDF Downloads 135
4146 Mutation of Galp Improved Fermentation of Mixed Sugars to Succinate Using Engineered Escherichia coli As1600a

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinat, sugarcane bagasse, E. coli

Procedia PDF Downloads 427
4145 Cross-Cultural Variations in Creative Perception Modulate Creative Performance

Authors: Anatoliy Kharkhurin

Abstract:

The study argues that variations in creative performance may be stipulated by cross-cultural differences in perception of the creativity construct. In Experiment 1, 50 Russian and 50 Emirati college students received structured imagination test that requires producing a drawing of an alien creature. In Experiment 2, 53 Russian and 53 Emirati college students (different from Experiment 1) on 5-point Likert-type scale evaluated the level of creativity of the drawings produced in the Experiment I. Repeated-measure ANOVA revealed an interaction between the country where the drawings were produced and the country where they were evaluated. Russians evaluated their country mates’ drawings as more creative than the Emiratis evaluated their country mates’ drawings. Regression analysis revealed that the creativity level of the drawings was positively predicted by the Russians’ evaluation and negatively predicted by the Emiratis’ evaluation. Finally, the evaluation of the drawings by the Russians predicted divergent thinking performance.

Keywords: creativity, culture, cross-cultural, perception, production

Procedia PDF Downloads 315
4144 Unconventional Hydrocarbon Management Strategy

Authors: Edi Artono, Budi Tamtomo, Gema Wahyudi Purnama

Abstract:

The world energy demand increasing extreamly high time by time, including domestic demand. That is impossible to avoid because energy a country demand proportional to surge in the number of residents, economic growth and addition of industrial sector. Domestic Oil and gas conventional reserves depleted naturally while production outcome from reservoir also depleted time to time. In the other hand, new reserve did not discover significantly to replace it all. Many people are investigating to looking for new alternative energy to answer the challenge. There are several option to solve energy fossil needed problem using Unconventional Hydrocarbon. There are four aspects to consider as a management reference in order that Unconventional Hydrocarbon business can work properly, divided to: 1. Legal aspect, 2. Environmental aspect, 3. Technical aspect and 4. Economy aspect. The economic aspect as the key to whether or not a project can be implemented or not in Oil and Gas business scheme, so do Unconventional Hydorcarbon business scheme. The support of regulation are needed to buttress Unconventional Hydorcarbon business grow up and make benefits contribute to Government.

Keywords: alternative energy, unconventional hydrocarbon, regulation support, management strategy

Procedia PDF Downloads 336
4143 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 120
4142 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM

Procedia PDF Downloads 298
4141 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 119
4140 Vfx-Creativity or Cost Cutting Study of the Use of Vfx in Hindi Cinema

Authors: Nidhi Patel, Amol Shinde, Amrin Moger

Abstract:

Mainstream Hindi cinema also known as Bollywood, is the largest film producing industry in India. The Indian film industry underwent a sea change since last few years. The industry adapted to the latest technologies and creative manpower to improve visual and cinematic effects. The changes helped the industry to improve its creative looks and ease on production budget. The research focuses on this very change, i.e. the use of VFX. There has been growing use of VFX in feature films. The primary focus is on how VFX can make a difference in the experience of watching a movie. The research examines the use of CGI/VFX in the narrative, which delivers a visually fulfilling film. It also focuses on the use of CGI/ VFX as a cost cutting tool. The research was exploratory in nature. It studies the industry’s evolvement, increment in its use by filmmakers and their intention to use it in their films. The researcher used qualitative method for data collection as an in-depth interview of 10 artists from VFX studios in Mumbai was conducted. The finding reveals the way VFX is used in Hindi cinema by the directors. The researcher learnt that VFX is majorly used as a tool to enhance creativity and provide the audience with creative viewing experience.

Keywords: Bollywood, Hindi cinema, VFX, CGI, technology, creativity, cost cutting

Procedia PDF Downloads 344
4139 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass

Authors: Miroslava Zelinkova, Marcela Ondova

Abstract:

Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.

Keywords: alkali activation, geopolymers, fly ash, particle fineness

Procedia PDF Downloads 205
4138 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 237
4137 A Project in the Framework “Nextgenerationeu”: Sustainable Photoelectrochemical Hydrogen Evolution - SERGIO

Authors: Patrizia Frontera, Anastasia Macario, Simona Crispi, Angela Malara, Pierantonio De Luca, Stefano Trocino

Abstract:

The exploration of solar energy for the photoelectrochemical splitting of water into hydrogen and oxygen has been extensively researched as a means of generating sustainable H₂ fuel. However, despite these efforts, commercialization of this technology has not yet materialized. Presently, the primary impediments to commercialization include low solar-to-hydrogen efficiency (2-3% in PEC with an active area of up to 10-15 cm²), the utilization of costly and critical raw materials (e.g., BiVO₄), and energy losses during the separation of H₂ from O₂ and H₂O vapours in the output stream. The SERGIO partners have identified an advanced approach to fabricate photoelectrode materials, coupled with an appropriate scientific direction to achieve cost-effective solar-driven H₂ production in a tandem photoelectrochemical cell. This project is designed to reach Technology Readiness Level (TRL) 4 by validating the technology in the laboratory using a cell with an active area of up to 10 cm², boasting a solar-to-hydrogen efficiency of 5%, and ensuring acceptable hydrogen purity (99.99%). Our objectives include breakthroughs in cost efficiency, conversion efficiency, and H₂ purity.

Keywords: photoelectrolysis, green hydrogen, photoelectrochemical cell, semiconductors

Procedia PDF Downloads 49
4136 Technological Enhancements in Supply Chain Management Post COVID-19

Authors: Miran Ismail

Abstract:

COVID-19 has caused widespread disruption in all economical sectors and industries around the world. The COVID-19 lockdown measures have resulted in production halts, restrictions on persons and goods movement, border closures, logistical constraints, and a slowdown in trade and economic activity. The main subject of this paper is to leverage technology to manage the supply chain effectively and efficiently through the usage of artificial intelligence. The research methodology is based on empirical data collected through a questionnaire survey. One of the approaches utilized is a case study of industrial organizations that face obstacles such as high operational costs, large inventory levels, a lack of well-established supplier relationships, human behavior, and system issues. The main contribution of this research to the body of knowledge is the empirical insights and on supply chain sustainability performance measurement. The results provide guidelines for the selection of advanced technologies to support supply chain processes and for the design of sustainable performance measurement systems.

Keywords: information technology, artificial intelligence, supply chain management, industrial organizations

Procedia PDF Downloads 110
4135 A Case of Survival with Self-Draining Haemopericardium Secondary to Stabbing

Authors: Balakrishna Valluru, Ruth Suckling

Abstract:

A 16 year old male was found collapsed on the road following stab injuries to the chest and abdomen and was transported to the emergency department by ambulance. On arrival in the emergency department the patient was breathless and appeared pale. He was maintaining his airway with spontaneous breathing and had a heart rate of 122 beats per minute with a blood pressure of 83/63 mmHg. He was resuscitated initially with three units of packed red cells. Clinical examination identified three incisional wounds each measuring 2 cm. These were in the left para-sternal region, right infra-scapular region and left upper quadrant of the abdomen. The chest wound over the left parasternal area at the level of 4tth intercostal space was bleeding intermittently on leaning forwards and was relieving his breathlessness intermittently. CT imaging was performed to characterize his injuries and determine his management. CT scan of chest and abdomen showed moderate size haemopericardium with left sided haemopneumothorax. The patient underwent urgent surgical repair of the left ventricle and left anterior descending artery. He recovered without complications and was discharged from the hospital. This case highlights the fact that the potential to develop a life threatening cardiac tamponade was mitigated by the left parasternal stab wound. This injury fortuitously provided a pericardial window through which the bleeding from the injured left ventricle and left anterior descending artery could drain into the left hemithorax providing an opportunity for timely surgical intervention to repair the cardiac injuries.

Keywords: stab, incisional, haemo-pericardium, haemo-pneumothorax

Procedia PDF Downloads 190
4134 Architecture for QoS Based Service Selection Using Local Approach

Authors: Gopinath Ganapathy, Chellammal Surianarayanan

Abstract:

Services are growing rapidly and generally they are aggregated into a composite service to accomplish complex business processes. There may be several services that offer the same required function of a particular task in a composite service. Hence a choice has to be made for selecting suitable services from alternative functionally similar services. Quality of Service (QoS)plays as a discriminating factor in selecting which component services should be selected to satisfy the quality requirements of a user during service composition. There are two categories of approaches for QoS based service selection, namely global and local approaches. Global approaches are known to be Non-Polynomial (NP) hard in time and offer poor scalability in large scale composition. As an alternative to global methods, local selection methods which reduce the search space by breaking up the large/complex problem of selecting services for the workflow into independent sub problems of selecting services for individual tasks are coming up. In this paper, distributed architecture for selecting services based on QoS using local selection is presented with an overview of local selection methodology. The architecture describes the core components, namely, selection manager and QoS manager needed to implement the local approach and their functions. Selection manager consists of two components namely constraint decomposer which decomposes the given global or workflow level constraints in local or task level constraints and service selector which selects appropriate service for each task with maximum utility, satisfying the corresponding local constraints. QoS manager manages the QoS information at two levels namely, service class level and individual service level. The architecture serves as an implementation model for local selection.

Keywords: architecture of service selection, local method for service selection, QoS based service selection, approaches for QoS based service selection

Procedia PDF Downloads 413
4133 Evaluating the Relationship between Neighbourhood Satisfaction and Urban Safety: The Case Study of Riverwood, Sydney

Authors: Samaneh Arasteh

Abstract:

Neighbourhood satisfaction and safety are the two main components of urban life and have a substantial impact on residents’ quality of life. The relationship between these two components, especially in areas surrounding our individual private dwellings, is highly influential on many social, economic, and wellbeing activities that may benefit neighbourhood residents. Neighbourhood and urban design – which are liable to be affected by the perceived quality of local public spaces – are likely to be significant factors influencing broader residents’ feelings of safety. With this in mind, this study reviews recent normative literature on how these design processes have influenced neighbourhood satisfaction including perceived safety with a focus on different aspects of public spaces including planning, management, and design in a mix-tenure neighbourhood. Following the study aim, Riverwood in Sydney’s southwest was chosen as a case study to gain a detailed understanding of the context by engaging with community members, residents, non-government organisations, and experts. Moreover, archival studies on neighbourhood satisfaction and safety, expert interviews, and resident questionnaires are presented to shed light on the relationship between neighbourhood satisfaction and perception of safety. The study argues that for the safer neighbourhood in urban areas, social-cultural factors need to be aligned toward strengthening physical factors and since making the environments safer, it is important to understand practical and achievable mechanisms which are required to improve existing estates. Findings show that increasing the clarity of community social and physical environmental involvements can promote residents’ feelings of safety and following neighbourhood satisfaction.

Keywords: neighbourhood satisfaction, public space, Riverwood, urban safety

Procedia PDF Downloads 169
4132 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 209
4131 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 264
4130 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications

Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh

Abstract:

Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.

Keywords: peatrics, tracheostomy, ICU, tracheostoma

Procedia PDF Downloads 256
4129 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 48
4128 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling

Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri

Abstract:

Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.

Keywords: magnetic field strength, flow velocity, retention time, barium sulfate

Procedia PDF Downloads 253
4127 Research on Straightening Process Model Based on Iteration and Self-Learning

Authors: Hong Lu, Xiong Xiao

Abstract:

Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.

Keywords: straightness, straightening stroke, deflection, shaft parts

Procedia PDF Downloads 315
4126 On Lie-Central Derivations and Almost Inner Lie-Derivations of Leibniz Algebras

Authors: Natalia Pacheco Rego

Abstract:

The Liezation functor is a map from the category of Leibniz algebras to the category of Lie algebras, which assigns a Leibniz algebra to the Lie algebra given by the quotient of the Leibniz algebra by the ideal spanned by the square elements of the Leibniz algebra. This functor is left adjoint to the inclusion functor that considers a Lie algebra as a Leibniz algebra. This environment fits in the framework of central extensions and commutators in semi-abelian categories with respect to a Birkhoff subcategory, where classical or absolute notions are relative to the abelianization functor. Classical properties of Leibniz algebras (properties relative to the abelianization functor) were adapted to the relative setting (with respect to the Liezation functor); in general, absolute properties have the corresponding relative ones, but not all absolute properties immediately hold in the relative case, so new requirements are needed. Following this line of research, it was conducted an analysis of central derivations of Leibniz algebras relative to the Liezation functor, called as Lie-derivations, and a characterization of Lie-stem Leibniz algebras by their Lie-central derivations was obtained. In this paper, we present an overview of these results, and we analyze some new properties concerning Lie-central derivations and almost inner Lie-derivations. Namely, a Leibniz algebra is a vector space equipped with a bilinear bracket operation satisfying the Leibniz identity. We define the Lie-bracket by [x, y]lie = [x, y] + [y, x] , for all x, y . The Lie-center of a Leibniz algebra is the two-sided ideal of elements that annihilate all the elements in the Leibniz algebra through the Lie-bracket. A Lie-derivation is a linear map which acts as a derivative with respect to the Lie-bracket. Obviously, usual derivations are Lie-derivations, but the converse is not true in general. A Lie-derivation is called a Lie-central derivation if its image is contained in the Lie-center. A Lie-derivation is called an almost inner Lie-derivation if the image of an element x is contained in the Lie-commutator of x and the Leibniz algebra. The main results we present in this talk refer to the conditions under which Lie-central derivation and almost inner Lie-derivations coincide.

Keywords: almost inner Lie-derivation, Lie-center, Lie-central derivation, Lie-derivation

Procedia PDF Downloads 122