Search results for: language learning strategies
7637 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico
Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba
Abstract:
In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems
Procedia PDF Downloads 1397636 Food and Nutritional Security in the Context of Climate Change in Ethiopia: Using Household Panel Data
Authors: Aemro Tazeze Terefe, Mengistu K. Aredo, Abule M. Workagegnehu, Wondimagegn M. Tesfaye
Abstract:
Climate-induced shocks have been shown to reduce agricultural production and cause fluctuation in output in developing countries. When livelihoods depend on rain-fed agriculture, climate-induced shocks translate into consumption shocks. Despite the substantial improvements in household consumption, climate-induced shocks, and other factors adversely affect consumption dynamics at the household level in Ethiopia. Therefore, household consumption dynamics in the context of climate-induced shocks help to guide resilience capacity and establish appropriate interventions and programs. The research employed three-round panel data based on the Ethiopian Socioeconomic Survey with spatial rainfall data to define unique measures of rainfall variability. The linear dynamic panel model results show that the lagged value of consumption, market shocks, and rainfall variability positively affected consumption dynamics. In contrast, production shocks, temperature, and amount of rainfall had a negative relationship. Coping strategies mitigate adverse climate-induced shocks on consumption aftershocks that smooth consumption over time. Support to increase the resilience capacity of households can involve efforts to make existing livelihoods and forms of production or reductions in the vulnerability of households. Therefore, government interventions are mandatory for asset accumulation agendas that support household coping strategies and respond to shocks. In addition, the dynamic linkage between consumption and significant socioeconomic and institutional factors should be taken into account to minimize the effect of climate-induced shocks on consumption dynamics.Keywords: climate shock, Ethiopia, fixed-effect model, food security
Procedia PDF Downloads 1227635 Geometry, the language of Manifestation of Tabriz School’s Mystical Thoughts in Architecture (Case Study: Dome of Soltanieh)
Authors: Lida Balilan, Dariush Sattarzadeh, Rana Koorepaz
Abstract:
In the Ilkhanid era, the mystical school of Tabriz manifested itself as an art school in various aspects, including miniatures, architecture, urban planning and design, simultaneously with the expansion of the many sciences of its time. In this era, mysticism, both in form and in poetry and prose, as well as in works of art reached its peak. Mysticism, as an inner belief and thought, brought the audience to the artistic and aesthetical view using allegorical and symbolic expression of the religion and had a direct impact on the formation of the intellectual and cultural layers of the society. At the same time, Mystic school of Tabriz could create a symbolic and allegorical language to create magnificent works of architecture with the expansion of science in various fields and using various sciences such as mathematics, geometry, science of numbers and by Abjad letters. In this era, geometry is the middle link between mysticism and architecture and it is divided into two categories, including intellectual and sensory geometry and based on its function. Soltaniyeh dome is one of the prominent buildings of the Tabriz school with the shrine land use. In this article, information is collected using a historical-interpretive method and the results are analyzed using an analytical-comparative method. The results of the study suggest that the designers and builders of the Soltaniyeh dome have used shapes, colors, numbers, letters and words in the form of motifs, geometric patterns as well as lines and writings in levels and layers ranging from plans to decorations and arrays for architectural symbolization and encryption to express and transmit mystical ideas.Keywords: geometry, Tabriz school, mystical thoughts, dome of Soltaniyeh
Procedia PDF Downloads 917634 The Influence of Caregivers’ Preparedness and Role Burden on Quality of Life among Stroke Patients
Authors: Yeaji Seok, Myung Kyung Lee
Abstract:
Background: Even if patients survive after a stroke, stroke patients may experience disability in mobility, sensation, cognition, and speech and language. Stroke patients require rehabilitation for functional recovery and daily life for a considerable time. During rehabilitation, the role of caregivers is important. However, the stroke patients’ quality of life may deteriorate due to family caregivers’ non-preparedness and increased role burden. Purpose: To investigate the prediction of caregivers' preparedness and role burden on stroke patients’ quality of life. Methods: The target population was stroke patients who were hospitalized for rehabilitation and their family care providers. A total of 153 patient-family caregiver dyads were recruited from June to August 2021. Data were collected from self-reported questionnaires and analyzed using descriptive statistics, t-tests, chi-squared test, one-way analysis of variance, Pearson’s correlation coefficients, and multiple regression with SPSS statistics 28 programs. Results: Family caregivers’ preparedness affected stroke patients’ mobility (β = .20, p < 0.05) and character (β = -.084, p < 0.05) and production activities (β = -.197, p < 0.05) in quality of life. The role burden of family caregivers affected language skills (β = .310, p<0.05), visual functions (β=-.357, p < 0.05), thinking skills (β = 0.443, p = 0.05), mood conditions (β = 0.565, p < 0.001), family roles (β = -0.361, p < 0.001), and social roles (β = -0.304, p < 0.001), while the caregivers’ burden of performing self-protection negatively affected patients’ social roles (β = .180, p=.048). In addition, caregivers’ role burden of personal life sacrifice affected patients’ mobility (β = .311, p < 0.05), self-care (β =.232, p < 0.05) and energy (β = .239, p < 0.05). Conclusion: This study indicated that family caregivers' preparedness and role burden affected stroke patients’ quality of life. The results of this study suggested that intervention to improve family caregivers’ preparedness and to reduce role burden should be required for quality of life in stroke patients.Keywords: quality of life, preparedness, role burden, caregivers, stroke
Procedia PDF Downloads 2167633 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century
Authors: Fatih Frank Alparslan
Abstract:
The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach
Procedia PDF Downloads 547632 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 1697631 Systematic Review of the Efficacy of Traditional Chinese Medicine in Parkinson Disease
Authors: Catarina Ramos Pereira, Jorge Rodrigues, Natália Oliveira, Jorge Machado, Maria Begoña Criado, Jorge Machado, Henri J. Greten
Abstract:
Background: Parkinson's disease is a multi-system neurodegenerative disorder characterized by motor and non-motor symptoms. To slow disorder progression, different treatment options are now available, but in most cases, these therapeutic strategies also involve the presence of important side effects. This has led many patients to pursue complementary therapies, such as acupuncture, to alleviate PD symptoms. Therefore, an update on the efficacy of this treatment for patients of PD is of great value. This work presents a systematic review of the efficacy of acupuncture treatments in relieving PD symptoms. Methods: EMBASE, Medline, Pubmed, Science Direct, The Cochrane Library, Cochrane Central Register of Controlled Trials (Central), and Scielo databases were systematically searched from January 2011 through July 2021. Randomized controlled trials (RCTs) published in English with all types of acupuncture treatment were included. The selection and analysis of the articles were conducted by two blinding authors through the Rayyan application. Results: 720 potentially relevant articles were identified; 52 RCTs met our inclusion criteria. After the exclusion of 35, we found 17 eligible. The included RCTs reported positive effects for acupuncture plus conventional treatment compared with conventional treatment alone in the UPDRS score. Conclusions: Additional evidence should be supported by rigorous methodological strategies. Although firm conclusions cannot be drawn, acupuncture treatment, in the framework of an interdisciplinary care team, appears to have positive effects on PD symptoms.Keywords: systematic review, Parkinson disease, acupuncture, traditional Chinese medicine
Procedia PDF Downloads 1487630 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.Keywords: RFID, asset tracking system, MongoDB, NoSQL
Procedia PDF Downloads 3087629 Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users
Authors: Yah-Ling Hung
Abstract:
eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.Keywords: eHealth, health intervention, health literacy, usability evaluation
Procedia PDF Downloads 1447628 Designing Information Systems in Education as Prerequisite for Successful Management Results
Authors: Vladimir Simovic, Matija Varga, Tonco Marusic
Abstract:
This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.Keywords: designing, education management, information systems, matrix technology, process affinity
Procedia PDF Downloads 4417627 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 1337626 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi
Authors: P. Phenpun, S. Wareewan
Abstract:
This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.Keywords: humanized care service, volunteer activity, nursing student, learning log
Procedia PDF Downloads 3097625 Strategies of Translation: Unlocking the Secret of 'Locksley Hall'
Authors: Raja Lahiani
Abstract:
'Locksley Hall' is a poem that Lord Alfred Tennyson (1809-1892) published in 1842. It is believed to be his first attempt to face as a poet some of the most painful of his experiences, as it is a study of his rising out of sickness into health, conquering his selfish sorrow by faith and hope. So far, in Victorian scholarship as in modern criticism, 'Locksley Hall' has been studied and approached as a canonical Victorian English poem. The aim of this project is to prove that some strategies of translation were used in this poem in such a way as to guarantee its assimilation into the English canon and hence efface to a large extent its Arabic roots. In its relationship with its source text, 'Locksley Hall' is at the same time mimetic and imitative. As part of the terminology used in translation studies, ‘imitation’ means almost the exact opposite of what it means in ordinary English. By adopting an imitative procedure, a translator would do something totally different from the original author, wandering far and freely from the words and sense of the original text. An imitation is thus aimed at an audience which wants the work of the particular translator rather than the work of the original poet. Hallam Tennyson, the poet’s biographer, asserts that 'Locksley Hall' is a simple invention of place, incidents, and people, though he notes that he remembers the poet claiming that Sir William Jones’ prose translation of the Mu‘allaqat (pre-Islamic poems) gave him the idea of the poem. A comparative work would prove that 'Locksley Hall' mirrors a great deal of Tennyson’s biography and hence is not a simple invention of details as asserted by his biographer. It would be challenging to prove that 'Locksley Hall' shares so many details with the Mu‘allaqat, as declared by Tennyson himself, that it needs to be studied as an imitation of the Mu‘allaqat of Imru’ al-Qays and ‘Antara in addition to its being a poem in its own right. Thus, the main aim of this work is to unveil the imitative and mimetic strategies used by Tennyson in his composition of 'Locksley Hall.' It is equally important that this project researches the acculturating assimilative tools used by the poet to root his poem in its Victorian English literary, cultural and spatiotemporal settings. This work adopts a comparative methodology. Comparison is done at different levels. The poem will be contextualized in its Victorian English literary framework. Alien details related to structure, socio-spatial setting, imagery and sound effects shall be compared to Arabic poems from the Mu‘allaqat collection. This would determine whether the poem is a translation, an adaption, an imitation or a genuine work. The ultimate objective of the project is to unveil in this canonical poem a new dimension that has for long been either marginalized or ignored. By proving that 'Locksley Hall' is an imitation of classical Arabic poetry, the project aspires to consolidate its literary value and open up new gates of accessing it.Keywords: comparative literature, imitation, Locksley Hall, Lord Alfred Tennyson, translation, Victorian poetry
Procedia PDF Downloads 2067624 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 1997623 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 257622 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 2567621 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 657620 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study
Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili
Abstract:
This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement
Procedia PDF Downloads 517619 Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design
Authors: Vojo George Fasinu, Nadaraj Govender, Predeep Kumar
Abstract:
An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers.Keywords: modelling, mathematical concepts, engineering, didactical, realistic model
Procedia PDF Downloads 1917618 Potential Contribution of Blue Oceans for Growth of Universities: Case of Faculties of Agriculture in Public Universities in Zimbabwe
Authors: Wonder Ngezimana, Benjamin Alex Madzivire
Abstract:
As new public universities are being applauded for being promulgated in Zimbabwe, there is need for comprehensive plan for ensuring sustainable competitive advantages in their niche mandated areas. Unhealthy competition between university faculties for enrolment hinders growth of the newly established universities faculties, especially in the agricultural sciences related disciplines. Blue ocean metaphor is based on creation of competitor-free market unlike 'red oceans', which are well explored and crowded with competitors. This study seeks to explore the potential contribution of blue oceans strategy (BOS) for growth of universities with bias towards faculties of agriculture in public universities in Zimbabwe. Case studies with agricultural sciences related disciplines were selected across three universities for interviewing. Data was collected through 10 open ended questions on academics in different management positions within university faculties of agriculture. Summative analysis was thereafter used during coding and interpretation of the data. Study findings show that there are several important elements for making offerings more comprehendible towards fostering faculty growth and performance with bias towards student enrolment. The results points towards BOS form of value innovations with various elements to consider in faculty offerings. To create valued innovation beyond the red oceans, the cases in this study have to be modelled to foster changes in enrolment, modes of delivery, certification, being research oriented with excellence in teaching, ethics, service to the community and entrepreneurship. There is, therefore, need to rethink strategy towards reshaping inclusive enrolment, industry relevance, affiliations, lifelong learning, sustainable student welfare, ubuntu, exchange programmes, research excellence, alumni support and entrepreneurship. Innovative strategic collaborations and partnerships, anchored on technology boost the strategic offerings henceforth leveraging on various offerings in this study. Areas of further study include the amplitude of blue oceans shown in the university faculty offerings and implementation strategies of BOS.Keywords: blue oceans strategy, collaborations, faculty offerings, value innovations
Procedia PDF Downloads 1497617 Special Education in the South African Context: A Bio-Ecological Perspective
Authors: Suegnet Smit
Abstract:
Prior to 1994, special education in South Africa was marginalized and fragmented. Moving away from a Medical model approach to special education, the Government, after 1994, promoted an Inclusive approach, as a means to transform education in general, and special education in particular. This transformation, however, is moving at too a slow pace for learners with barriers to learning and development to benefit fully from their education. The goal of the Department of Basic Education is to minimize, remove, and prevent barriers to learning and development in the educational setting, by attending to the unique needs of the individual learner. However, the implementation of Inclusive education is problematic, and general education remains poor. This paper highlights the historical development of special education in South Africa, underpinned by a bio-ecological perspective. Problematic areas within the systemic levels of the education system are highlighted in order to indicate how the interactive processes within the systemic levels affect special needs learners on the personal dimension of the bio-ecological approach. As part of the methodology, thorough document analysis was conducted on information collected from a large body of research literature, which included academic articles, reports, policies, and policy reviews. Through a qualitative analysis, data were grouped and categorized according to the bio-ecological model systems, which revealed various successes and challenges within the education system. The challenges inhibit change, growth, and development for the child, who experience barriers to learning. From these findings, it is established that special education in South Africa has been, and still is, on a bumpy road. Sadly, the transformation process of change, envisaged by implementing Inclusive education, is still yet a dream, not fully realized. Special education seems to be stuck at what is, and the education system has not moved forward significantly enough to reach what special education should and could be. The gap that exists between a vision of Inclusive quality education for all, and the current reality, is still too wide. Problems encountered in all the education system levels, causes a funnel-effect downward to learners with special educational needs, with negative effects for the development of these learners.Keywords: bio-ecological perspective, education systems, inclusive education, special education
Procedia PDF Downloads 1507616 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 977615 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness
Authors: Marzieh Karimihaghighi, Carlos Castillo
Abstract:
This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism
Procedia PDF Downloads 1567614 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1527613 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities
Authors: Shoba Rathilal
Abstract:
High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development
Procedia PDF Downloads 827612 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory
Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji
Abstract:
Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.Keywords: students’ voices, teaching agenda, evaluation, feedback, responses
Procedia PDF Downloads 927611 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 617610 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers
Authors: Cansu Bozer, Saadet İrem Turgut
Abstract:
Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.Keywords: education, child development, artificial intelligence, preschool teachers
Procedia PDF Downloads 267609 Examining the Relations among Autobiographical Memory Recall Types, Quality of Descriptions, and Emotional Arousal in Psychotherapy for Depression
Authors: Jinny Hong, Jeanne C. Watson
Abstract:
Three types of autobiographical memory recall -specific, episodic, and generic- were examined in relation to the quality of descriptions and in-session levels of emotional arousal. Correlational analyses and general estimating equation were conducted to test the relationships between 1) quality of descriptions and type of memory, 2) type of memory and emotional arousal, and 3) quality of descriptions and emotional arousal. The data was transcripts drawn from an archival randomized-control study comparing cognitive-behavioral therapy and emotion-focused therapy in a 16-week treatment for depression. Autobiographical memory recall segments were identified and sorted into three categories: specific, episodic, and generic. Quality of descriptions of these segments was then operationalized and measured using the Referential Activity Scale, and each memory segment was rated on four dimensions: concreteness, specificity, clarity, and overall imagery. Clients’ level of emotional arousal for each recall was measured using the Client’s Expression Emotion Scale. Contrary to the predictions, generic memories are associated with higher emotional arousal ratings and descriptive language ratings compared to specific memories. However, a positive relationship emerged between the quality of descriptions and expressed emotional arousal, indicating that the quality of descriptions in which memories are described in sessions is more important than the type of memory recalled in predicting clients’ level of emotional arousal. The results from this study provide a clearer understanding of the role of memory recall types and use of language in activating emotional arousal in psychotherapy sessions in a depressed sample.Keywords: autobiographical memory recall, emotional arousal, psychotherapy for depression, quality of descriptions, referential activity
Procedia PDF Downloads 1677608 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 169