Search results for: Gagne’s learning model
15763 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 32915762 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 13415761 Development of a Classification Model for Value-Added and Non-Value-Added Operations in Retail Logistics: Insights from a Supermarket Case Study
Authors: Helena Macedo, Larissa Tomaz, Levi Guimarães, Luís Cerqueira-Pinto, José Dinis-Carvalho
Abstract:
In the context of retail logistics, the pursuit of operational efficiency and cost optimization involves a rigorous distinction between value-added and non-value-added activities. In today's competitive market, optimizing efficiency and reducing operational costs are paramount for retail businesses. This research paper focuses on the development of a classification model adapted to the retail sector, specifically examining internal logistics processes. Based on a comprehensive analysis conducted in a retail supermarket located in the north of Portugal, which covered various aspects of internal retail logistics, this study questions the concept of value and the definition of wastes traditionally applied in a manufacturing context and proposes a new way to assess activities in the context of internal logistics. This study combines quantitative data analysis with qualitative evaluations. The proposed classification model offers a systematic approach to categorize operations within the retail logistics chain, providing actionable insights for decision-makers to streamline processes, enhance productivity, and allocate resources more effectively. This model contributes not only to academic discourse but also serves as a practical tool for retail businesses, aiding in the enhancement of their internal logistics dynamics.Keywords: lean retail, lean logisitcs, retail logistics, value-added and non-value-added
Procedia PDF Downloads 7215760 Thermodynamic Properties of Binary Gold-Rare Earth Compounds (Au-RE)
Authors: H. Krarchaa, A. Ferroudj
Abstract:
This work presents the results of thermodynamic properties of intermetallic rare earth-gold compounds at different stoichiometric structures. It mentions the existence of the AuRE AuRE2, Au2RE, Au51RE14, Au6RE, Au3RE and Au4RE phases in the majority of Au-RE phase diagrams. It's observed that equiatomic composition is a common compound for all gold rare earth alloys and it has the highest melting temperature. Enthalpies of the formation of studied compounds are calculated based on a new reformulation of Miedema’s model.Keywords: rare earth element, enthalpy of formation, thermodynamic properties, macroscopic model
Procedia PDF Downloads 3115759 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates
Authors: Zina Ghiloufi, Tahar Khir
Abstract:
A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)
Procedia PDF Downloads 23815758 Tests for Zero Inflation in Count Data with Measurement Error in Covariates
Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao
Abstract:
In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.Keywords: count data, measurement error, score test, zero inflation
Procedia PDF Downloads 29315757 Characteristics of Business Models of Industrial-Internet-of-Things Platforms
Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen
Abstract:
The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study
Procedia PDF Downloads 24815756 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 40915755 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 45515754 PlayTrain: A Research and Intervention Project for Early Childhood Teacher Education
Authors: Dalila Lino, Maria Joao Hortas, Carla Rocha, Clarisse Nunes, Natalia Vieira, Marina Fuertes, Kátia Sa
Abstract:
The value of play is recognized worldwide and is considered a fundamental right of all children, as defined in Article 31 of the United Nations Children’s Rights. It is consensual among the scientific community that play, and toys are of vital importance for children’s learning and development. Play promotes the acquisition of language, enhances creativity and improves social, affective, emotional, cognitive and motor development of young children. Young children ages 0 to 6 who have had many opportunities to get involved in play show greater competence to adapt to new and unexpected situations and more easily overcome the pain and suffering caused by traumatic situations. The PlayTrain Project aims to understand the places/spaces of play in the education of children from 0 to 6 years and promoting the training of preschool teachers to become capable of developing practices that enhance children’s agency, experimentation in the physical and social world and the development of imagination and creativity. This project follows the Design-Based-Research (DBR) and has two dimensions: research and intervention. The participants are 120 students from the Master in Pre-school Education of the Higher School of Education, Polytechnic Institute of Lisbon enrolled in the academic year 2018/2019. The development of workshops focused on the role of play and toys for young children’s learning promotes the participants reflection and the development of skills and knowledge to construct developmentally appropriated practices in early childhood education. Data was collected through an online questionnaire and focal groups. Results show that the PlayTrain Project contribute to the development of a body of knowledge about the role of play for early childhood education. It was possible to identify the needs of preschool teacher education and to enhance the discussion among the scientific and academic community about the importance of deepening the role of play and toys in the study plans of the masters in pre-school education.Keywords: children's learning, early childhood education, play, teacher education, toys
Procedia PDF Downloads 14715753 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration
Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen
Abstract:
In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.Keywords: administrative law, algorithmic decision-making, decision support, public law
Procedia PDF Downloads 22215752 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia
Authors: Rohan Bhasin
Abstract:
Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM
Procedia PDF Downloads 16815751 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training
Authors: Carin Chuang, Kuan-Chou Chen
Abstract:
An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation
Procedia PDF Downloads 14315750 Schoolwide Implementation of Schema-Based Instruction for Mathematical Problem Solving: An Action Research Investigation
Authors: Sara J. Mills, Sally Howell
Abstract:
The field of special education has long struggled to bridge the research to practice gap. There is ample evidence from research of effective strategies for students with special needs, but these strategies are not routinely implemented in schools in ways that yield positive results for students. In recent years, the field of special education has turned its focus to implementation science. That is, discovering effective methods of implementing evidence-based practices in school settings. Teacher training is a critical factor in implementation. This study aimed to successfully implement Schema-Based Instruction (SBI) for math problem solving in four classrooms in a special primary school serving students with language deficits, including students with Autism Spectrum Disorders (ASD) and Intellectual Disabilities (ID). Using an action research design that allowed for adjustments and modification to be made over the year-long study, two cohorts of teachers across the school were trained and supported in six-week learning cycles to implement SBI in their classrooms. The learning cycles included a one-day training followed by six weeks of one-on-one or team coaching and three fortnightly cohort group meetings. After the first cohort of teachers completed the learning cycle, modifications and adjustments were made to lesson materials in an attempt to improve their effectiveness with the second cohort. Fourteen teachers participated in the study, including master special educators (n=3), special education instructors (n=5), and classroom assistants (n=6). Thirty-one students participated in the study (21 boys and 10 girls), ranging in age from 5 to 12 years (M = 9 years). Twenty-one students had a diagnosis of ASD, 20 had a diagnosis of mild or moderate ID, with 13 of these students having both ASD and ID. The remaining students had diagnosed language disorders. To evaluate the effectiveness of the implementation approach, both student and teacher data was collected. Student data included pre- and post-tests of math word problem solving. Teacher data included fidelity of treatment checklists and pre-post surveys of teacher attitudes and efficacy for teaching problem solving. Finally, artifacts were collected throughout the learning cycle. Results from cohort 1 and cohort 2 revealed similar outcomes. Students improved in the number of word problems they answered correctly and in the number of problem-solving steps completed independently. Fidelity of treatment data showed that teachers implemented SBI with acceptable levels of fidelity (M = 86%). Teachers also reported increases in the amount of time spent teaching problem solving, their confidence in teaching problem solving and their perception of students’ ability to solve math word problems. The artifacts collected during instruction indicated that teachers made modifications to allow their students to access the materials and to show what they knew. These findings are in line with research that shows student learning can improve when teacher professional development is provided over an extended period of time, actively involves teachers, and utilizes a variety of learning methods in classroom contexts. Further research is needed to evaluate whether these gains in teacher instruction and student achievement can be maintained over time once the professional development is completed.Keywords: implementation science, mathematics problem solving, research-to-practice gap, schema based instruction
Procedia PDF Downloads 12915749 The Planner's Pentangle: A Proposal for a 21st-Century Model of Planning for Sustainable Development
Authors: Sonia Hirt
Abstract:
The Planner's Triangle, an oft-cited model that visually defined planning as the search for sustainability to balance the three basic priorities of equity, economy, and environment, has influenced planning theory and practice for a quarter of a century. In this essay, we argue that the triangle requires updating and expansion. Even if planners keep sustainability as their key core aspiration at the center of their imaginary geometry, the triangle's vertices have to be rethought. Planners should move on to a 21st-century concept. We propose a Planner's Pentangle with five basic priorities as vertices of a new conceptual polygon. These five priorities are Wellbeing, Equity, Economy, Environment, and Esthetics (WE⁴). The WE⁴ concept more accurately and fully represents planning’s history. This is especially true in the United States, where public art and public health played pivotal roles in the establishment of the profession in the late 19th and early 20th centuries. It also more accurately represents planning’s future. Both health/wellness and aesthetic concerns are becoming increasingly important in the 21st century. The pentangle can become an effective tool for understanding and visualizing planning's history and present. Planning has a long history of representing urban presents and future as conceptual models in visual form. Such models can play an important role in understanding and shaping practice. For over two decades, one such model, the Planner's Triangle, stood apart as the expression of planning's pursuit for sustainability. But if the model is outdated and insufficiently robust, it can diminish our understanding of planning practice, as well as the appreciation of the profession among non-planners. Thus, we argue for a new conceptual model of what planners do.Keywords: sustainable development, planning for sustainable development, planner's triangle, planner's pentangle, planning and health, planning and art, planning history
Procedia PDF Downloads 14415748 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 16715747 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 41215746 Spectral Analysis Applied to Variables of Oil Wells Profiling
Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon
Abstract:
Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.Keywords: oil, well, spectral analysis, oil extraction
Procedia PDF Downloads 53715745 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.Keywords: desalting unit, crude oil, neural networks, simulation, recovery, separation
Procedia PDF Downloads 45715744 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method
Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk
Abstract:
The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching
Procedia PDF Downloads 28915743 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach
Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane
Abstract:
The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.
Procedia PDF Downloads 14715742 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes
Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang
Abstract:
To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP
Procedia PDF Downloads 21015741 Structural Equation Modeling Exploration for the Multiple College Admission Criteria in Taiwan
Authors: Tzu-Ling Hsieh
Abstract:
When the Taiwan Ministry of Education implemented a new university multiple entrance policy in 2002, most colleges and universities still use testing scores as mainly admission criteria. With forthcoming 12 basic-year education curriculum, the Ministry of Education provides a new college admission policy, which will be implemented in 2021. The new college admission policy will highlight the importance of holistic education by more emphases on the learning process of senior high school, except only on the outcome of academic testing. However, the development of college admission criteria doesn’t have a thoughtful process. Universities and colleges don’t have an idea about how to make suitable multi-admission criteria. Although there are lots of studies in other countries which have implemented multi-college admission criteria for years, these studies still cannot represent Taiwanese students. Also, these studies are limited without the comparison of two different academic fields. Therefore, this study investigated multiple admission criteria and its relationship with college success. This study analyzed the Taiwan Higher Education Database with 12,747 samples from 156 universities and tested a conceptual framework that examines factors by structural equation model (SEM). The conceptual framework of this study was adapted from Pascarella's general causal model and focused on how different admission criteria predict students’ college success. It discussed the relationship between admission criteria and college success, also the relationship how motivation (one of admission standard) influence college success through engagement behaviors of student effort and interactions with agents of socialization. After processing missing value, reliability and validity analysis, the study found three indicators can significantly predict students’ college success which was defined as average grade of last semester. These three indicators are the Chinese language scores at college entrance exam, high school class rank, and quality of student academic engagement. In addition, motivation can significantly predict quality of student academic engagement and interactions with agents of socialization. However, the multi-group SEM analysis showed that there is no difference to predict college success between the students from liberal arts and science. Finally, this study provided some suggestions for universities and colleges to develop multi-admission criteria through the empirical research of Taiwanese higher education students.Keywords: college admission, admission criteria, structural equation modeling, higher education, education policy
Procedia PDF Downloads 18115740 Effect of Classroom Acoustic Factors on Language and Cognition in Bilinguals and Children with Mild to Moderate Hearing Loss
Authors: Douglas MacCutcheon, Florian Pausch, Robert Ljung, Lorna Halliday, Stuart Rosen
Abstract:
Contemporary classrooms are increasingly inclusive of children with mild to moderate disabilities and children from different language backgrounds (bilinguals, multilinguals), but classroom environments and standards have not yet been adapted adequately to meet these challenges brought about by this inclusivity. Additionally, classrooms are becoming noisier as a learner-centered as opposed to teacher-centered teaching paradigm is adopted, which prioritizes group work and peer-to-peer learning. Challenging listening conditions with distracting sound sources and background noise are known to have potentially negative effects on children, particularly those that are prone to struggle with speech perception in noise. Therefore, this research investigates two groups vulnerable to these environmental effects, namely children with a mild to moderate hearing loss (MMHLs) and sequential bilinguals learning in their second language. In the MMHL study, this group was assessed on speech-in-noise perception, and a number of receptive language and cognitive measures (auditory working memory, auditory attention) and correlations were evaluated. Speech reception thresholds were found to be predictive of language and cognitive ability, and the nature of correlations is discussed. In the bilinguals study, sequential bilingual children’s listening comprehension, speech-in-noise perception, listening effort and release from masking was evaluated under a number of different ecologically valid acoustic scenarios in order to pinpoint the extent of the ‘native language benefit’ for Swedish children learning in English, their second language. Scene manipulations included target-to-distractor ratios and introducing spatially separated noise. This research will contribute to the body of findings from which educational institutions can draw when designing or adapting educational environments in inclusive schools.Keywords: sequential bilinguals, classroom acoustics, mild to moderate hearing loss, speech-in-noise, release from masking
Procedia PDF Downloads 33115739 Developing a Quality Mentor Program: Creating Positive Change for Students in Enabling Programs
Authors: Bianca Price, Jennifer Stokes
Abstract:
Academic and social support systems are critical for students in enabling education; these support systems have the potential to enhance the student experience whilst also serving a vital role for student retention. In the context of international moves toward widening university participation, Australia has developed enabling programs designed to support underrepresented students to access to higher education. The purpose of this study is to examine the effectiveness of a mentor program based within an enabling course. This study evaluates how the mentor program supports new students to develop social networks, improve retention, and increase satisfaction with the student experience. Guided by Social Learning Theory (SLT), this study highlights the benefits that can be achieved when students engage in peer-to-peer based mentoring for both social and learning support. Whilst traditional peer mentoring programs are heavily based on face-to-face contact, the present study explores the difference between mentors who provide face-to-face mentoring, in comparison with mentoring that takes place through the virtual space, specifically via a virtual community in the shape of a Facebook group. This paper explores the differences between these two methods of mentoring within an enabling program. The first method involves traditional face-to-face mentoring that is provided by alumni students who willingly return to the learning community to provide social support and guidance for new students. The second method requires alumni mentor students to voluntarily join a Facebook group that is specifically designed for enabling students. Using this virtual space, alumni students provide advice, support and social commentary on how to be successful within an enabling program. Whilst vastly different methods, both of these mentoring approaches provide students with the support tools needed to enhance their student experience and improve transition into University. To evaluate the impact of each mode, this study uses mixed methods including a focus group with mentors, in-depth interviews, as well as engaging in netnography of the Facebook group ‘Wall’. Netnography is an innovative qualitative research method used to interpret information that is available online to better understand and identify the needs and influences that affect the users of the online space. Through examining the data, this research will reflect upon best practice for engaging students in enabling programs. Findings support the applicability of having both face-to-face and online mentoring available for students to assist enabling students to make a positive transition into University undergraduate studies.Keywords: enabling education, mentoring, netnography, social learning theory
Procedia PDF Downloads 12415738 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 28515737 Determination of Anchor Lengths by Retaining Walls
Authors: Belabed Lazhar
Abstract:
The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results.Keywords: retaining walls, anchoring, stability, mechanical modeling, safety
Procedia PDF Downloads 35315736 Various Factors Affecting Students Performances In A Saudi Medical School
Authors: Raneem O. Salem, Najwa Al-Mously, Nihal Mohamed Nabil, Abdulmohsen H. Al-Zalabani, Abeer F. Al-Dhawi, Nasser Al-Hamdan
Abstract:
Objective: There are various demographic and educational factors that affect the academic performance of undergraduate medical students. The objective of this study is to identify these factors and correlate them to the GPA of the students. Methods: A cross-sectional study design utilizing grade point averages (GPAs) of two cohorts of students in both levels of the pre-clinical phase. In addition, self-administered questionnaire was used to evaluate the effect of these factors on students with poor and good cumulative GPA. Results: Among the various factors studied, gender, marital status, and the transportation used to reach the faculty significantly affected academic performance of students. Students with a cumulative GPA of 3.0 or greater significantly differed than those with a GPA of less than 3.0 being higher in female students, in married students, and type of transportation used to reach the college. Factors including age, educational factors, and type of transportation used have shown to create a significant difference in GPA between male and females. Conclusion: Factors such as age, gender, marital status, learning resources, study time, and the transportation used have been shown to significantly affect medical student GPA as a whole batch as well as when they are tested for gender.Keywords: academic performance, educational factors, learning resources, study time, gender, socio-demographic factors
Procedia PDF Downloads 28115735 Balanced Score Card a Tool to Improve Naac Accreditation – a Case Study in Indian Higher Education
Authors: CA Kishore S. Peshori
Abstract:
Introduction: India, a country with vast diversity and huge population is going to have largest young population by 2020. Higher education has and will always be the basic requirement for making a developing nation to a developed nation. To improve any system it needs to be bench-marked. There have been various tools for bench-marking the systems. Education is delivered in India by universities which are mainly funded by government. This universities for delivering the education sets up colleges which are again funded mainly by government. Recently however there has also been autonomy given to universities and colleges. Moreover foreign universities are waiting to enter Indian boundaries. With a large number of universities and colleges it has become more and more necessary to measure this institutes for bench-marking. There have been various tools for measuring the institute. In India college assessments have been made compulsory by UGC. Naac has been offically recognised as the accrediation criteria. The Naac criteria has been based on seven criterias namely: 1. Curricular assessments, 2. Teaching learning and evaluation, 3. Research Consultancy and Extension, 4. Infrastructure and learning resources, 5. Student support and progression, 6. Governance leadership and management, 7. Innovation and best practices. The Naac tries to bench mark the institution for identification, sustainability, dissemination and adaption of best practices. It grades the institution according to this seven criteria and the funding of institution is based on these grades. Many of the colleges are struggling to get best of grades but they have not come across a systematic tool to achieve the results. Balanced Scorecard developed by Kaplan has been a successful tool for corporates to develop best of practices so as to increase their financial performance and also retain and increase their customers so as to grow the organization to next level.It is time to test this tool for an educational institute. Methodology: The paper tries to develop a prototype for college based on the secondary data. Once a prototype is developed the researcher based on questionnaire will try to test this tool for successful implementation. The success of this research will depend on its implementation of BSC on an institute and its grading improved due to this successful implementation. Limitation of time is a major constraint in this research as Naac cycle takes minimum 4 years for accreditation and reaccreditation the methodology will limit itself to secondary data and questionnaire to be circulated to colleges along with the prototype model of BSC. Conclusion: BSC is a successful tool for enhancing growth of an organization. Educational institutes are no exception to these. BSC will only have to be realigned to suit the Naac criteria. Once this prototype is developed the success will be tested only on its implementation but this research paper will be the first step towards developing this tool and will also initiate the success by developing a questionnaire and getting and evaluating the responses for moving to the next level of actual implementationKeywords: balanced scorecard, bench marking, Naac, UGC
Procedia PDF Downloads 27715734 Design and Validation of an Aerodynamic Model of the Cessna Citation X Horizontal Stabilizer Using both OpenVSP and Digital Datcom
Authors: Marine Segui, Matthieu Mantilla, Ruxandra Mihaela Botez
Abstract:
This research is the part of a major project at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) aiming to improve a Cessna Citation X aircraft cruise performance with an application of the morphing wing technology on its horizontal tail. However, the horizontal stabilizer of the Cessna Citation X turns around its span axis with an angle between -8 and 2 degrees. Within this range, the horizontal stabilizer generates certainly some unwanted drag. To cancel this drag, the LARCASE proposes to trim the aircraft with a horizontal stabilizer equipped by a morphing wing technology. This technology aims to optimize aerodynamic performances by changing the conventional horizontal tail shape during the flight. As a consequence, this technology will be able to generate enough lift on the horizontal tail to balance the aircraft without an unwanted drag generation. To conduct this project, an accurate aerodynamic model of the horizontal tail is firstly required. This aerodynamic model will finally allow precise comparison between a conventional horizontal tail and a morphed horizontal tail results. This paper presents how this aerodynamic model was designed. In this way, it shows how the 2D geometry of the horizontal tail was collected and how the unknown airfoil’s shape of the horizontal tail has been recovered. Finally, the complete horizontal tail airfoil shape was found and a comparison between aerodynamic polar of the real horizontal tail and the horizontal tail found in this paper shows a maximum difference of 0.04 on the lift or the drag coefficient which is very good. Aerodynamic polar data of the aircraft horizontal tail are obtained from the CAE Inc. level D research aircraft flight simulator of the Cessna Citation X.Keywords: aerodynamic, Cessna, citation, coefficient, Datcom, drag, lift, longitudinal, model, OpenVSP
Procedia PDF Downloads 376