Search results for: mechatronic systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9360

Search results for: mechatronic systems

2970 Access to Apprenticeships and the Impact of Individual and School Level Characteristics

Authors: Marianne Dæhlen

Abstract:

Periods of apprenticeships are characteristic of many vocational educational training (VET) systems. In many countries, becoming a skilled worker implies that the journey starts with an application for apprenticeships at a company or another relevant training establishment. In Norway, where this study is conducted, VET students start their journey with two years of school-based training before applying for two years of apprenticeship. Previous research has shown that access to apprenticeships differs by family background (socio-economic, immigrant, etc.), gender, school grades, and region. The question we raise in this study is whether the status, reputation, or position of the vocational school contributes to VET students’ access to apprenticeships. Data and methods: Register data containing information about schools’ and VET students’ characteristics will be analyzed in multilevel regression analyses. At the school level, the data will contain information on school size, shares of immigrants and/or share of male/female students, and grade requirements for admission. At the VET-student level, the register contains information on e.g., gender, school grades, educational program/trade, obtaining apprenticeship or not. The data set comprises about 3,000 students. Results: The register data is expected to be received in November 2024 and consequently, any results are not present at the point of this call. The planned article is part of a larger research project granted from the Norwegian Research Council and will, accordingly to the plan, start up in December 2024.

Keywords: apprenticeships, VET-students’ characteristics, vocational schools, quantitative methods

Procedia PDF Downloads 9
2969 Access to the Community and Needed Supports among People with Physical Disabilities Receiving Long-Term Services and Supports in the United States

Authors: Stephanie Giordano, Eric Lam, Rosa Plasencia

Abstract:

An important piece of active aging is ensuring people have the right support to meet individual needs. Using NCI-AD data, we will look at measures of satisfaction with community access and needed services among people with physical disabilities receiving LTSS in the US. National Core Indicators—Aging and Disabilities (NCI-AD) is a voluntary effort by State Medicaid, aging, and disability agencies across the US to measure and track their own performance. NCI-AD uses a standardized survey – the Adult Consumer Survey (ACS), to hear directly from people receiving services about the quality of services and supports they receive. Data from the 2018-19 ACS found that compared to people without a physical disability, those with a physical disability were more likely to make choices about the services they receive, including when and how often they receive those services. Yet people with a physical disability were less likely to report they get enough assistance with everyday activities (e.g., shopping, housework, and taking medications) and self-care (e.g., dressing or bathing) and more likely to report that services and supports do not fully meet their needs and goals. A further breakdown by age shows that people 40-65 years old with a physical disability experienced even greater barriers to being as active in the community as they would like to be, indicating a need to better support people as they age with or into a disability. We will explore how these and other outcomes were affected by COVID-19, take a closer look at outcomes by demographics (e.g., race/ethnicity, gender, and mental health diagnoses) and discuss implications on the future needs of service systems.

Keywords: quality-of-life, long-term services and supports, person-centered, community

Procedia PDF Downloads 109
2968 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems

Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang

Abstract:

Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.

Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel

Procedia PDF Downloads 96
2967 Cable Transport for a Smart City: Between Challenges and Opportunities, Case of the City of Algiers, Algeria

Authors: Ihaddadene Thanina, Haraoubia Imane, Baouni Tahar

Abstract:

Urban mobility is one of the first challenges of cities; it is becoming more and more problematic because it is perceived as the cause of many dysfunctions; it is not only to facilitate accessibility but also to ensure vast benefits. For this reason, several cities in the world have thought about alternatives to smart mobility and sustainable transport. Today, the sustainable city has many cards at its disposal, and a new mode is entering the urban scene: aerial cable transport; it has imposed itself as an effective mode of public transport and a real solution for the future. This electric mobility brings a new dimension, not only to collective daily travel but also to the urban space. It has an excellent capacity to redevelop the public space; it is a catalyst that allows one to appreciate the view from the sky and to discover different large-scale projects that bring an important attractiveness to the city. With regard to the cities in the world which use these systems of transport: Algeria does not escape this reality; it is the country which has the greatest number of devices of urban transport by cable in the world, with installations in many cities such as Tlemcen, Constantine, Blida, Oran, Tizi-Ouzou, Annaba, Skikda. The following study explores the role of cable transport in the transformation of the city of Algiers into a smart city. The methodology used in this work is based on the development of a set of indicators using a questionnaire survey. The main objective of this work is to shed light on cable transport as a key issue in designing the sustainable city of tomorrow, to evaluate its role in the city of Algiers, and its ability to integrate into the urban transport network.

Keywords: Algiers, cable transport, indicators, smart city

Procedia PDF Downloads 113
2966 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario

Authors: Pooja Verma, Sumana Ghosh

Abstract:

There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.

Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber

Procedia PDF Downloads 352
2965 Economic and Environmental Impact of the Missouri Grazing Schools

Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner

Abstract:

Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.

Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture

Procedia PDF Downloads 201
2964 A Systematic Review Examining the Experimental methodology behind in vivo testing of hiatus hernia and Diaphragmatic Hernia Mesh

Authors: Whitehead-Clarke T., Beynon V., Banks J., Karanjia R., Mudera V., Windsor A., Kureshi A.

Abstract:

Introduction: Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. Method: This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. 44 articles were identified and underwent abstract review, where 22 were excluded. 4 further studies were excluded after full text review – leaving 18 to undergo data extraction. Results: Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. 5 studies undertook mechanical testing on tissue samples – all uniaxial in nature. Testing strip widths ranged from 1-20mm (median 3mm). Testing speeds varied from 1.5-60mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularization and macrophages, respectively (n=9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. 11 studies assessed adhesion formation, of which 8 used one of four scoring systems. 8 studies measured mesh shrinkage. Discussion: In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation.

Keywords: hiatus, diaphragmatic, hernia, mesh, materials testing, in vivo

Procedia PDF Downloads 214
2963 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 238
2962 The Mayan Calendar: An Ideology Laden and Worldview Changing Discourse

Authors: John Rosswell Cummings III

Abstract:

This research examines the discourse ancient Maya ritual practice manifest and maintained through language in a contemporary society as led by a daykeeper— a Maya spiritual leader— with the objective of discovering if the Maya Calendar has an influence on worldview. Through an ethnography of communication and discursive analysis framework, this research examines the discourse of and around the Maya calendar through original research. Data collected includes the ceremonial performance of the Tzolkin ritual, a ritual that takes place every 13 days to ceremonially welcome one of the 20 Universal Forces. During the ceremony, participants supplicate, sacrifice, and venerate. This ritual, based off the Tzolkin cycle in the Mayan Calendar, contains strong, culture-binding ideologies. This research performs a close analysis of the 20 energies of the Tzolkin and their glyphs so as to gain a better understanding of current ideologies in Maya communities. Through a linguistic relativity frame of reference, including both the strong and weak versions, the 20 Universal Forces are shown to influence ways of life. This research argues that it is not just the native language, but the discourses native to the community as held through the calendar, influence thought and have the potential to offer an alternate worldview, thus shaping the cultural narrative which in return influences identity of the community. Research of this kind, on calendric systems and linguistic relativity, has the power to make great discoveries about the societies of the world and their worldviews.

Keywords: anthropological linguistics, discourse analysis, cultural studies, sociolinguistics

Procedia PDF Downloads 147
2961 Operations Guide Implementation Practice in Information Technology Organizations

Authors: Ziad M. Hejazi, Hani F. Mokhtar, Mohammed S. Bahabri, Mohammed H. Ghafouri, Ahmed S. Bahaitham

Abstract:

This paper demonstrates the efforts taken by an Information Technology (IT) organization at Saudi Aramco to establish Operations Guide in a practical manner. Review of related work and literature revealed several important aspects to be considered when implementing the operation guide including Identify supporting IT groups, specify each group roles and responsibilities, formulate the IT operations in terms of processes (input/output), list each process main steps, provide the details of each process main step, develop the RACI (Responsible, Accountable, Consulted, and Informed) chart, highlight the process KPI’s, utilized systems, and forms. Identified aspects were then addressed in the actual implementation via several practices, including developing the operation guide for all IT supported operations, creating a shared folder for the operations guide, and announcing the implementation to all IT staff. The implementation of the mentioned practice was benchmarked, identified as best in class, and adopted by other internal organizations. Moreover, it was evident and appreciated by IT management. The significance of this study stems from the fact that it might be among the first studies in Saudi Arabia that propose a practical guideline to implement IT operations guide by IT organizations. Additional research significance comes from the study being conducted in Saudi Aramco, one of the world’s biggest integrated energy and petrochemical companies.

Keywords: operations guide, process implementation, Saudi Aramco company, information technology, standard of procedure

Procedia PDF Downloads 96
2960 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 270
2959 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 86
2958 Performance Gap and near Zero Energy Buildings Compliance of Monitored Passivhaus in Northern Ireland, the Republic of Ireland and Italy

Authors: S. Colclough, V. Costanzo, K. Fabbri, S. Piraccini, P. Griffiths

Abstract:

The near Zero Energy Building (nZEB) standard is required for all buildings from 2020. The Passive House (PH) standard is a well-established low-energy building standard, having been designed over 25 years ago, and could potentially be used to achieve the nZEB standard in combination with renewables. By comparing measured performance with design predictions, this paper considers if there is a performance gap for a number of monitored properties and assesses if the nZEB standard can be achieved by following the well-established PH scheme. Analysis is carried out based on monitoring results from real buildings located in Northern Ireland, the Republic of Ireland and Italy respectively, with particular focus on the indoor air quality including the assumed and measured indoor temperature and heating periods for both standards as recorded during a full annual cycle. An analysis is carried out also on the energy performance certificates of each of the dwellings to determine if they meet the near Zero Energy Buildings primary energy consumption targets set in the respective jurisdictions. Each of the dwellings is certified as complying with the passive house standard, and accordingly have very good insulation levels, heat recovery and ventilation systems of greater than 75% efficiency and an airtightness of less than 0.6 air changes per hour at 50 Pa. It is found that indoor temperature and relative humidity were within the comfort boundaries set in the design stage, while carbon dioxide concentrations are sometimes higher than the values suggested by EN 15251 Standard for comfort class I especially in bedrooms.

Keywords: monitoring campaign, nZEB (near zero energy buildings), Passivhaus, performance gap

Procedia PDF Downloads 152
2957 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam

Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin

Abstract:

As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.

Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45

Procedia PDF Downloads 375
2956 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 98
2955 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 382
2954 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 156
2953 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 359
2952 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials

Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang

Abstract:

Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.

Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material

Procedia PDF Downloads 105
2951 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 369
2950 In Vitro Antibacterial Effect of Hydroalcoholic Extract of Lawsonia Inermis, Malva Sylvestris and Boswellia Serrata on Aggregatibacter Actinomycetemcomitans

Authors: Surena V.

Abstract:

Background and Aim: Periodontal diseases are among the most common infectious diseases all around the world, even in developed countries. Considering the increased rate of microbial resistance to antibiotics and the chemical side effects of antibiotics and antiseptics used for the treatment of periodontal disease, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal herbs have recently become popular as antimicrobial and preventive agents. This study aimed to assess the antibacterial effects of hydroalcoholic extracts of Lawsonia inermis, Malva sylvestris and Boswellia serrata on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Materials and Methods: Hydroalcoholic extracts of the three medicinal plants were obtained by the maceration technique and A. actinomycetemcomitans was cultured. The antimicrobial efficacy of the three medicinal plants was compared with that of 0.2% chlorhexidine (CHX) according to the CLSI protocol using agar disc diffusion and broth microdilution techniques. All tests were repeated three times. Results: Hydroalcoholic extracts of all three plants had antimicrobial activity against A. actinomycetemcomitans. The minimum inhibitory concentration (MIC) of Lawsonia inermis, Malva sylvestris, and Boswellia serrata was 78.1, 156.2, and 1666 µg/mL with no significant difference between them. The MIC of CHX was 3.33 µg/mL, which was significantly higher than that of Boswellia serrata extract. Conclusion: Given that, further in vivo studies confirm other properties of these extracts and their safety in terms of cytotoxicity and mutagenicity, hydroalcoholic extracts of Lawsonia inermis and Malva sylvestris may be used in mouthwashes or local delivery systems to affect periodontal biofilm.

Keywords: actinobacilus actinomycetem commitans, lawsonia inermis, malva sylvestris, boswellia serrata

Procedia PDF Downloads 59
2949 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 210
2948 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 140
2947 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
2946 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
2945 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 237
2944 Supply Chain and Performance Measurement: An Alignment With Sustainable Development Goals

Authors: Miriam Corrado, Roberta Ciccola, Maria Serena Chiucchi

Abstract:

SDGs represent the last edge in the sustainability corporate practices, including the supply chain management. Supply chains are becoming more global and complex, can create more inclusive markets and make contribution to the advance of the sustainable development. In corporate practices, the presence of sustainability criteria in supply chain management could offer an opportunity to increase competitiveness and to meet stakeholders’ expectations in terms of sustainability and corporate accountability. The research aims to understand how focal companies can integrate SDGs in their supply chain and how they can measure and assess their impacts on SDGs. The study adopts a multiple case study methodology based on four case studies referred to companies committed in measuring SDGs’ performance in their supply chains. Preliminary findings demonstrate the willingness and the need of companies to commit under a supply-chain perspective for the achievement of SDGs. Companies recognize their role in impacting the SDGs through their procurement choices by defining and implementing an SDGs scoring system. The contribution of the study is twofold: first, given the lack of research and studies addressing the integration of SDGs in the supply chain and in the performance measurement systems, the research provides a contribution to the current academic literature in relation to these emerging gaps; second, the research provides a practical guidance to implement a sustainable supply chain and advance towards the achievement of SDGs.

Keywords: sustainable supply chains, sustainable development goals, performance measurement, performance management

Procedia PDF Downloads 195
2943 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 109
2942 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka

Procedia PDF Downloads 476
2941 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 138