Search results for: minimum water content
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14919

Search results for: minimum water content

8619 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 70
8618 Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases

Authors: B. M. Pardeshi

Abstract:

Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.

Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents

Procedia PDF Downloads 318
8617 Blending Effects on Crude Oil Stability: An Experimental Study

Authors: Muheddin Hamza, Entisar Etter

Abstract:

This study is a part of investigating the possibility of blending two crude oils obtained from Libyan oil fields, namely crude oil (A) and crude oil (B) with different ratios, prior to blending the crude oils have to be compatible in order to avoid phase out and precipitation of asphaltene from the bulk of crude. The physical properties of both crudes such as density, viscosity, pour point and sulphur content were measured according to (ASTM) method. To examine the stability of both crudes and their blends, the oil compatibility model using microscopic, colloidal instability index (CII) using SARA analysis and asphaltene stabilization test using Turbiscan tests were conducted in the Libyan Petroleum Institute laboratories. Compatibility tests were carried out with both crude oils, the insolubility number (IN), and the solubility blending number (SBN), for both crude oils and their blends were calculated. The criteria for compatibility of any blend is that the volume average solubility blending number (SBN) is greater than the insolubility number (IN) of any component in the blend, the results indicated that both crudes were compatible. To support the results of compatibility tests the SARA analysis was done for the fractional determination of (saturates, aromatics, resins and asphaltenes) content. From this result, the colloidal Instability index (CII) and resin to asphaltenes ratio (R/A) were calculated for crudes and their blends. The results show that crude oil (B) which has higher (R/A) and lower (CII) is more stable than crude oil (A) and as the ratio of crude (B) increases in the blend the (CII) and (R/A) were improved, and the blends becomes more stable. Asphaltene stabilization test was also conducted for the crudes and their blends using Turbiscan MA200 according to the standard test method ASTM D7061-04, the Turbiscan shows that the crude (B) is more stable than crude (A) which shows a fair tendency. The (CII) and (R/A) were compared with the solubility number (SBN) for each crude and the blends along with Turbiscan results. The solubility blending number (SBN) of the crudes and their blends show that the crudes are compatible, also by comparing (R/A) and (SBN) values of the blends, it can be seen that they are complements of each other. All the experimental results show that the blends of both crudes are more stability.

Keywords: asphaltene, crude oil, compatibility, oil blends, resin, SARA

Procedia PDF Downloads 476
8616 Taxonomic Study of Squirrel Order Rodentia, Family Sciuridea of District Jamshoro Pakistan

Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh

Abstract:

The squirrel commonly known as ‘Gulhari’ belongs to the order Rodentia, family sciuridea, its sub-species inhabit tropical to sub tropical regions of Asia. The core aim of the present study is to investigate the taxonomy of squirrel in District Jamshoro. Sampling was obtained for the taxonomic identification from various adjoining areas of District Jamshoro by non random method. During present study a total number of 107 specimens were collected from July 2018 to December 2018, specimens were collected from District Jamshoro it was observed that the prevalence of the sub-species Funambulus tristriatus numarius (23.3%), Funambulus pennant tulescens (23.3%) was high while Funambulus tristriatus tristriatus ((20.5%), Funambulus palmarun brodie (18.6%) and the minimum prevalence Funambulus palmaruns palmaruns (14.1%). In the present research, it is established that the climate factors, altitude has principal importance in the poor density of squirrel.

Keywords: Jamshoro District Pakistan, squirrel, taxonomy, prevalence

Procedia PDF Downloads 154
8615 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.

Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness

Procedia PDF Downloads 294
8614 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: Fatih Iscan, Ceren Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis

Procedia PDF Downloads 347
8613 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method

Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini

Abstract:

The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.

Keywords: ABS, process optimization, Taguchi, mechanical properties

Procedia PDF Downloads 56
8612 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 329
8611 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 376
8610 Design of Semi-Automatic Vent and Flash Remover

Authors: Inba Blesso P., Senthil Kumar P.

Abstract:

The main consideration of any tire manufacturing process is wear resistance. One of the factors that cause tire wear is improper removal of vent and flash from the tire surface. The contact point between tyre surface and vent is highly supposed to wear. When the vehicle running at higher speed with heavy load, the tire vent and flash is wearing initially and it makes few of the tire surface material to wear along with it. Hence, provision must be given to efficient removal vent and flash thereby tire wear. Human efforts in trimming of tire vent results in time consuming and inaccurate output. Hence, this lead to the reduction in production rate and profit. Thus, the development of automated system can helps to attain minimum time consumption and provide a possible way to get the profitable production. Semi-automated system that employs Pneumatic actuators and sequencing circuits are focused in this study. By implementing this, one can achieve the accurate results with reduction in time and profitable output.

Keywords: tire manufacturing, pneumatic system, vent and flash removal, engineering and technology

Procedia PDF Downloads 366
8609 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process

Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud

Abstract:

The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,

Keywords: electrocoagulation, green process, experimental design, optimization

Procedia PDF Downloads 76
8608 Inventory Optimization in Restaurant Supply Chain Outlets

Authors: Raja Kannusamy

Abstract:

The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.

Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting

Procedia PDF Downloads 76
8607 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 575
8606 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 450
8605 Nutritional Benefits of Soy: An Implication for Health Education

Authors: Mbadugha Esther Ifeoma

Abstract:

Soybeans, like other legumes are rich in nutrients. However, the nutrient profile of soybeans differs in some important ways from most other legumes. Among other nutrients, soy is high in protein, carbohydrates, and fibers, is rich in vitamins, minerals and unsaturated fatty acids and is low in saturated fatty acids. Because of its high nutritional value, it has been rated to be equivalent to meats, eggs and milk. Soy has many health benefits including prevention of coronary heart disease, prevention of cancer growth, improvement of cognitive function, promotion of bone health, prevention of obesity, prevention of type II diabetes and promotion of growth of normal floras in the colon. Soybean consumption is also associated with some side effects which include allergy, flatulence and abdominal discomfort. Nurses/health care providers should therefore, educate clients on the precautionary measures to be taken in preparing soy food products in order to reduce to the barest minimum the side effects, while encouraging them to include soy as part of their daily meals for optimal health and vitality.

Keywords: health benefit, health education, nutritional benefit, soybeans

Procedia PDF Downloads 472
8604 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers

Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez

Abstract:

An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.

Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization

Procedia PDF Downloads 150
8603 Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse

Authors: Duong Cong Chinh, Shiao-Shing Chen, Le Quang Huy

Abstract:

Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system.

Keywords: high rate anaerobic digestion, membrane distillation, thermophilic anaerobic, wastewater reuse

Procedia PDF Downloads 109
8602 Detectability of Malfunction in Turboprop Engine

Authors: Tomas Vampola, Michael Valášek

Abstract:

On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.

Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine

Procedia PDF Downloads 81
8601 Implementation and Use of Person-Centered Care in Europe: A Literature Review

Authors: Kristina Rosengren, Petra Brannefors, Eric Carlstrom

Abstract:

Background: Implementation and use of person-centered care (PCC) is increasing worldwide, and why the current study intends to increase knowledge regarding how PCC is used in different European countries. Purpose: To describe the extent of person-centred care in 23 European countries in relation to use specific countries healthcare system (Beveridge, Bismarck, Mixed/OOP). Methods: The study was conducted by literature review inspired by Spice, both scientific empirical studies (Cinahl, Medline, Scopus) as well as grey literature (Google) were used. Totally 1194 documents were included divided into Cinahl n=139, Medline n=245, Scopus n=493 and Google n=317. Data were analysed with descriptive (percentage, range) regarding content and scope of PCC/country according to content and scope of PCC in each country, grouped into the healthcare system (Beveridge, Bismarck, Mixed/OOP) and geographic placement. Results: PCC were most common in UK (England, Scotland, Wales, North Ireland), n=481, 40.3%, Sweden (n=231, 19.3%), The Netherlands (n=80, 6.7%), Ireland (n=79, 6.6%) and Norway (n=61, 5.1%); and less common in Poland (0.6%), Hungary (0.5%), Greece (0.4%), Latvia (0.4%) and Serbia (0%). Beveridge healthcare system (12/23=0.5217, 52.2%) show 85 percent of documents with advantage of scientific literature valued 2.92 (n=999, 0.55-4.07), compare to advantage of grey literature in Bismarck (10/23=0.4347, 43.5%) with 15 percentage valued 2.35 (n=190, 0-3.27) followed by Mixed/OOP (1/23=4%) with 0.4 valued 2.25. Conclusions: Seven out of 10 countries with Beveridge health system used PCC compare to less-used PCC in countries with the Bismarck system. Research, as well as national regulations regarding PCC, are important tools to motivate the advantage of PCC in clinical practice. Moreover, implementation of PCC needs a systematic approach, from national (politicians), regional (guideline) and local (specific healthcare settings) levels visualized by decision-making as law, mission, policies, and routines in clinical practice to establish a well-integrated phenomenon in Europe.

Keywords: Beveridge, Bismarck, Europe, evidence-based, literature review, person-centered care

Procedia PDF Downloads 94
8600 Formulation, Preparation, and Evaluation of Coated Desloratadine Oral Disintegrating Tablets

Authors: Mohamed A. Etman, Mona G. Abd-Elnasser, Mohamed A. Shams-Eldin, Aly H. Nada

Abstract:

Orally disintegrating tablets (ODTs) are gaining importance as new drug delivery systems and emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. Their advantages such as administration without water, anywhere, anytime lead to their suitability to geriatric and pediatric patients. They are also suitable for the mentally ill, the bed-ridden and patients who do not have easy access to water. The benefits, in terms of patient compliance, rapid onset of action, increased bioavailability, and good stability make these tablets popular as a dosage form of choice in the current market. These dosage forms dissolve or disintegrate in the oral cavity within a matter of seconds without the need of water or chewing. Desloratadine is a tricyclic antihistaminic, which has a selective and peripheral H1-antagonist action. It is an antagonist at histamine H1 receptors, and an antagonist at all subtypes of the muscarinic acetylcholine receptor. Desloratadine is the major metabolite of loratadine. Twelve different placebos ODT were prepared (F1-F12) using different functional excipients. They were evaluated for their compressibility, hardness and disintegration time. All formulations were non sticky except four formulations; namely (F8, F9, F10, F11). All formulations were compressible with the exception of (F2). Variable disintegration times were found ranging between 20 and 120 seconds. It was found that (F12) showed the least disintegration time (20 secs) without showing any sticking which could be due to the use of high percentage of superdisintegrants. Desloratadine showed bitter taste when formulated as ODT without any treatment. Therefore, different techniques were tried in order to mask its bitter taste. Using Eudragit EPO resulted in complete masking of the bitter taste of the drug and increased the acceptability to volunteers. The compressible non sticky formulations (F1, F3, F4, F5, F6, F7 and F12) were subjected to further evaluation tests after addition of coated desloratadine, including weight uniformity, wetting time, and friability testing.. Fairly good weight uniformity values were observed in all the tested formulations. F12 exhibiting the shortest wetting time (14.7 seconds) and consequently the lowest (20 seconds) disintegration time. Dissolution profile showed that 100% desloratadine release was attained after only 2.5 minutes from the prepared ODT (F12) with dissolution efficiency of 95%.

Keywords: Desloratadine, orally disintegrating tablets (ODTs), formulations, taste masking

Procedia PDF Downloads 441
8599 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 361
8598 Computational Team Dynamics and Interaction Patterns in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.

Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams

Procedia PDF Downloads 54
8597 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 116
8596 A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran

Authors: Masoumeh Moghbel

Abstract:

Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62).

Keywords: altitude, atmospheric carbon dioxide, latitude, temperature variations

Procedia PDF Downloads 390
8595 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors

Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub

Abstract:

Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.

Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance

Procedia PDF Downloads 258
8594 Michel Foucault’s Docile Bodies and The Matrix Trilogy: A Close Reading Applied to the Human Pods and Growing Fields in the Films

Authors: Julian Iliev

Abstract:

The recent release of The Matrix Resurrections persuaded many film scholars that The Matrix trilogy had lost its appeal and its concepts were largely outdated. This study examines the human pods and growing fields in the trilogy. Their functionality is compared to Michel Foucault’s concept of docile bodies: linking fictional and contemporary worlds. This paradigm is scrutinized through surveillance literature. The analogy brings to light common elements of hidden surveillance practices in technologies. The comparison illustrates the effects of body manipulation portrayed in the movies and their relevance with contemporary surveillance practices. Many scholars have utilized a close reading methodology in film studies (J.Bizzocchi, J.Tanenbaum, P.Larsen, S. Herbrechter, and Deacon et al.). The use of a particular lens through which media text is examined is an indispensable factor that needs to be incorporated into the methodology. The study spotlights both scenes from the trilogy depicting the human pods and growing fields. The functionality of the pods and the fields compare directly with Foucault’s concept of docile bodies. By utilizing Foucault’s study as a lens, the research will unearth hidden components and insights into the films. Foucault recognizes three disciplines that produce docile bodies: 1) manipulation and the interchangeability of individual bodies, 2) elimination of unnecessary movements and management of time, and 3) command system guaranteeing constant supervision and continuity protection. These disciplines can be found in the pods and growing fields. Each body occupies a single pod aiding easier manipulation and fast interchangeability. The movement of the bodies in the pods is reduced to the absolute minimum. Thus, the body is transformed into the ultimate object of control – minimum movement correlates to maximum energy generation. Supervision is exercised by wiring the body with numerous types of cables. This ultimate supervision of body activity reduces the body’s purpose to mere functioning. If a body does not function as an energy source, then it’s unplugged, ejected, and liquefied. The command system secures the constant supervision and continuity of the process. To Foucault, the disciplines are distinctly different from slavery because they stop short of a total takeover of the bodies. This is a clear difference from the slave system implemented in the films. Even though their system might lack sophistication, it makes up for it in the elevation of functionality. Further, surveillance literature illustrates the connection between the generation of body energy in The Matrix trilogy to the generation of individual data in contemporary society. This study found that the three disciplines producing docile bodies were present in the portrayal of the pods and fields in The Matrix trilogy. The above comparison combined with surveillance literature yields insights into analogous processes and contemporary surveillance practices. Thus, the constant generation of energy in The Matrix trilogy can be equated to the consistent data generation in contemporary society. This essay shows the relevance of the body manipulation concept in the Matrix films with contemporary surveillance practices.

Keywords: docile bodies, film trilogies, matrix movies, michel foucault, privacy loss, surveillance

Procedia PDF Downloads 77
8593 Monitoring Land Cover/Land Use Change in Rupandehi District by Optimising Remotely Sensed Image

Authors: Hritik Bhattarai

Abstract:

Land use and land cover play a crucial role in preserving and managing Earth's natural resources. Various factors, such as economic, demographic, social, cultural, technological, and environmental processes, contribute to changes in land use and land cover (LULC). Rupandehi District is significantly influenced by a combination of driving forces, including its geographical location, rapid population growth, economic opportunities, globalization, tourism activities, and political events. Urbanization and urban growth in the region have been occurring in an unplanned manner, with internal migration and natural population growth being the primary contributors. Internal migration, particularly from neighboring districts in the higher and lower Himalayan regions, has been high, leading to increased population growth and density. This study utilizes geospatial technology, specifically geographic information system (GIS), to analyze and illustrate the land cover and land use changes in the Rupandehi district for the years 2009 and 2019, using freely available Landsat images. The identified land cover categories include built-up area, cropland, Das-Gaja, forest, grassland, other woodland, riverbed, and water. The statistical analysis of the data over the 10-year period (2009-2019) reveals significant percentage changes in LULC. Notably, Das-Gaja shows a minimal change of 99.9%, while water and forest exhibit increases of 34.5% and 98.6%, respectively. Riverbed and built-up areas experience changes of 95.3% and 39.6%, respectively. Cropland and grassland, however, show concerning decreases of 102.6% and 140.0%, respectively. Other woodland also indicates a change of 50.6%. The most noteworthy trends are the substantial increase in water areas and built-up areas, leading to the degradation of agricultural and open spaces. This emphasizes the urgent need for effective urban planning activities to ensure the development of a sustainable city. While Das-Gaja seems unaffected, the decreasing trends in cropland and grassland, accompanied by the increasing built-up areas, are unsatisfactory. It is imperative for relevant authorities to be aware of these trends and implement proactive measures for sustainable urban development.

Keywords: land use and land cover, geospatial, urbanization, geographic information system, sustainable urban development

Procedia PDF Downloads 43
8592 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19

Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane

Abstract:

The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.

Keywords: network analysis, building simulation, COVID-19

Procedia PDF Downloads 143
8591 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum

Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza

Abstract:

Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.

Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin

Procedia PDF Downloads 95
8590 Blending Synchronous with Asynchronous Learning Tools: Students’ Experiences and Preferences for Online Learning Environment in a Resource-Constrained Higher Education Situations in Uganda

Authors: Stephen Kyakulumbye, Vivian Kobusingye

Abstract:

Generally, World over, COVID-19 has had adverse effects on all sectors but with more debilitating effects on the education sector. After reactive lockdowns, education institutions that could continue teaching and learning had to go a distance mediated by digital technological tools. In Uganda, the Ministry of Education thereby issued COVID-19 Online Distance E-learning (ODeL) emergent guidelines. Despite such guidelines, academic institutions in Uganda and similar developing contexts with academically constrained resource environments were caught off-guard and ill-prepared to transform from face-to-face learning to online distance learning mode. Most academic institutions that migrated spontaneously did so with no deliberate tools, systems, strategies, or software to cause active, meaningful, and engaging learning for students. By experience, most of these academic institutions shifted to Zoom and WhatsApp and instead conducted online teaching in real-time than blended synchronous and asynchronous tools. This paper provides students’ experiences while blending synchronous and asynchronous content-creating and learning tools within a technological resource-constrained environment to navigate in such a challenging Uganda context. These conceptual case-based findings, using experience from Uganda Christian University (UCU), point at the design of learning activities with two certain characteristics, the enhancement of synchronous learning technologies with asynchronous ones to mitigate the challenge of system breakdown, passive learning to active learning, and enhances the types of presence (social, cognitive and facilitatory). The paper, both empirical and experiential in nature, uses online experiences from third-year students in Bachelor of Business Administration student lectured using asynchronous text, audio, and video created with Open Broadcaster Studio software and compressed with Handbrake, all open-source software to mitigate disk space and bandwidth usage challenges. The synchronous online engagements with students were a blend of zoom or BigBlueButton, to ensure that students had an alternative just in case one failed due to excessive real-time traffic. Generally, students report that compared to their previous face-to-face lectures, the pre-recorded lectures via Youtube provided them an opportunity to reflect on content in a self-paced manner, which later on enabled them to engage actively during the live zoom and/or BigBlueButton real-time discussions and presentations. The major recommendation is that lecturers and teachers in a resource-constrained environment with limited digital resources like the internet and digital devices should harness this approach to offer students access to learning content in a self-paced manner and thereby enabling reflective active learning through reflective and high-order thinking.

Keywords: synchronous learning, asynchronous learning, active learning, reflective learning, resource-constrained environment

Procedia PDF Downloads 112