Search results for: energy conservation strategy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12633

Search results for: energy conservation strategy

6333 The Impact of Inpatient New Boarding Policy on Emergency Department Overcrowding: A Discrete Event Simulation Study

Authors: Wheyming Tina Song, Chi-Hao Hong

Abstract:

In this study, we investigate the effect of a new boarding policy - short stay, on the overcrowding efficiency in emergency department (ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS) and ED retention rate (the percentage that patients stay in ED over than 48 hours in one month). Discrete event simulation (DES) is used as an analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a census of 6 months' patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts both the NEDOCS and ED retention rate when the no. of short stay beds is more than three.

Keywords: emergency department (ED), common random number (CRN), national emergency department overcrowding score (NEDOCS), discrete event simulation (DES)

Procedia PDF Downloads 346
6332 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 393
6331 Can Urbanisation Be the Cause for Increasing Urban Poverty: An Exploratory Analysis for India

Authors: Sarmistha Singh

Abstract:

An analysis of trend of urbanization and urban poverty in recent decades is showing that a distinctly reducing rural poverty and increasing in urban areas. It can be argued that the higher the urbanization fuelled by the urban migration to city, which is picking up people from less skilled, education so they faced obstacle to enter into the mainstream economy of city. The share of workforce in economy is higher; in contrast it remains as negligence. At the same time, less wages, absence of social security, social dialogue make them insecure. The vulnerability in their livelihood found. So the paper explores the relation of urbanization and urban poverty in the city, in other words how the urbanization process affecting the urban space in creating the number of poor people in the city. The central focus is the mobility of people with less education and skilled with motive of job search and better livelihood. In many studies found the higher the urbanization and higher the urban poverty in city. In other words, poverty is the impact of urbanization. The strategy of urban inequality through ‘dispersal of concentration’ by the World Bank and others, need to be examined.

Keywords: urbanization, mobility, urban poverty, informal settlements, informal worker

Procedia PDF Downloads 410
6330 The Effects of Urbanization on Peri-Urban Livelihood in Ghana: A Case of Kumasi Peri-Urban Communities

Authors: Charles Kwaku Oppong

Abstract:

The research linked urban expansion resulting from urbanization with changing morphology processes happening in peri-urban communities. Two villages of Kumasi City peri-urban were used as a case study. Appropriate analytical framework and methodology (literature review and empirical evidence) were employed to ensure that all pertinent issues of peri-urban interface are brought to light. It was discovered from the study that since peri-urban livelihood is linked with assets base; it has been found that stock of asset, as well as transformation processes, were major factors in the shaping of livelihoods strategies. For that reason, success or failure of household livelihoods was seen to relate to the kind of livelihood strategy employed. With efforts to mitigate for livelihoods failure due to peri-urban development, households' recourse to remittances, land disposal, and other means as an alternative livelihood approach. The study calls for local government policy interventions in regulating peri-urban transformation process and providing safety nets for the vulnerable.

Keywords: urban expansion, peri-urban interface, livelihoods, asset

Procedia PDF Downloads 254
6329 Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification

Authors: Shaohua Li, Aihua Zhang, Kelly Zatopek, Saba Parvez, Andrew F. Gardner, Ivan R. Corrêa Jr., Christopher J. Noren, Ming-Qun Xu

Abstract:

Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface.

Keywords: immobilized enzymes, biocatalysis, poly(ethylene oxide), surface modification

Procedia PDF Downloads 304
6328 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 223
6327 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 71
6326 Human–Wildlife Conflicts in Selected Areas of Azad Jammu and Kashmir, Pakistan

Authors: Nausheen Irshad

Abstract:

Human-wildlife conflict (HWC) exists in both developed and developing countries though it is more serious in developing nations. Knowledge of species ecology and species sensitivity to anthropogenic pressures is an important prerequisite for conservation/management. Therefore, three districts (Poonch, Bagh, and Muzaffarabad) of Azad Jammu and Kashmir were selected to highlight the wildlife hunting practices from January 2015 to November 2018. The study area was thoroughly explored to recover dead animals. Moreover, the local community was investigated (questionnaire survey) to catch on motives of killing. The results showed HWC mainly arises due to feeding habits of wild animals as some are frugivorous (small Indian civet and small Kashmir flying squirrel) who damaged human cultivated fruit trees. Besides, Indian crested porcupine and wild boar act as serious crop pests. The feeding upon domestic animals (common leopard) and poultry (Asiatic Jackal and Red fox) were also reported as factors of conflict. Hence numerous wild animals and birds (N=120) were found killed by natives in revenge. Despite protected status in Pakistan, the killed mammals belonged to categories of critically endangered (Panthera pardus) and near threatened (Viverricula indica) species. The important birds include critically endangered (Falco peregrines) and endangered (Lophura leucomelanos) species. It was found that mammals were primarily killed due to HWC (60%) followed by recreation (20%) and trade (15%) Whereas, the foremost hunting reasons for birds are recreation (50%), food (25%) and trade (25%). The drastic hunting/killing of the species needs our immediate attention. This unwarranted killing must be stopped forthwith otherwise these animals become extinct.

Keywords: Azad Jammu and Kashmir, anthropogenic pressures, endangered species, human-wildlife conflicts

Procedia PDF Downloads 158
6325 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption

Authors: Sherif Fakher

Abstract:

Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.

Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS

Procedia PDF Downloads 27
6324 Using Synonymy in Translation of Hemingway’s 'A Farewell to Arms' from English into Albanian

Authors: Miranda Enesi, Helena Grillo Mukli

Abstract:

The English word-stock is extremely rich in synonyms which can be largely accounted for by the abundant borrowing. Translation problems encountered by translators in general are usually ‘transfer problems’. They face more difficulties in the interpretation of meaning from the source language text than lexical differences between languages. The aim of the study is to inspect the various strategies used in translating from English into Albanian specific words in the ‘A Farwell to arms’ novel. For this purpose, examples translated from English into Albanian were examined. The Albanian equivalents have shown that various strategies were used in order to overcome the problem of rendering words and expressions into the target language. Employed strategies were synonymy, modulation, transposition, calque and word for word translation. In addition, this paper shows that the strategy of translating using synonymy is mostly used. In this paper, an attempt is made to examine the nature of contextual synonymy in order to investigate its problematic nature regarding translation. Types of synonymy are analyzed and then examples from English and Albanian versions are provided to examine the overlap between them.

Keywords: equivalence, literal translation, paraphrasing, transfer problems, synonymy

Procedia PDF Downloads 171
6323 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 303
6322 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 299
6321 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 417
6320 Enhancing Mitochondrial Activity and Metabolism in Aging Female Germ Cells: Synergistic Effects of Dual ROCK and ROS Inhibition

Authors: Kuan-Hao Tsui, Li-Te Lin, Chia-Jung Li

Abstract:

The combination of Y-27632 and Vitamin C significantly enhances the quality of aging germ cells by reducing reactive oxygen species (ROS) production, restoring mitochondrial membrane potential balance, and promoting mitochondrial fusion. The age-related decline in oocyte quality contributes to reduced fertility, increased aneuploidy, and diminished embryo quality, with mitochondrial dysfunction in both oocytes and granulosa cells being a key factor in this decline. Experiments on aging germ cells investigated the effects of the Y-27632 and Vitamin C combination. In vivo studies involved aged mice to assess oocyte maturation and ROS accumulation during culture. The assessment included mitochondrial activity, ROS levels, mitochondrial membrane potential, and mitochondrial dynamics. Cellular energy metabolism and ATP production were also measured. The combination treatment effectively addressed mitochondrial dysfunction and regulated cellular energy metabolism, promoting oxygen respiration and increasing ATP production. In aged mice, this supplement treatment enhanced in vitro oocyte maturation and prevented ROS accumulation in aging oocytes during culture. While these findings are promising, further research is needed to explore the long-term effects and potential side effects of the Y-27632 and Vitamin C combination. Additionally, translating these findings to human subjects requires careful consideration. Overall, the study suggests that the Y-27632 and Vitamin C combination could be a promising intervention to mitigate aging-related dysfunction in germ cells, potentially enhancing oocyte quality, particularly in the context of in vitro fertilization.

Keywords: ovarian aging, supplements, ROS, mitochondria

Procedia PDF Downloads 35
6319 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 410
6318 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 382
6317 Environmental Accounting Practice: Analyzing the Extent and Qualification of Environmental Disclosures of Turkish Companies Located in BIST-XKURY Index

Authors: Raif Parlakkaya, Mustafa Nihat Demirci, Mehmet Nuri Salur

Abstract:

Environmental pollution has detrimental effects on the quality of our life and its scope has reached such an extent that measures are being taken both at the national and international levels to reduce, prevent and mitigate its impact on social, economic and political spheres. Therefore, awareness of environmental problems has been increasing among stakeholders and accordingly among companies. It is seen that corporate reporting is expanding beyond environmental performance. Primary purpose of publishing an environmental report is to provide specific audiences with useful, meaningful information. This paper is intended to analyze the extent and qualification of environmental disclosures of Turkish publicly quoted firms and see how it varies from one sector to another. The data for the study were collected from annual activity reports of companies, listed on the corporate governance index (BIST-XKURY) of Istanbul Stock Exchange. Content analysis was the research methodology used to measure the extent of environmental disclosure. Accordingly, 2015 annual activity reports of companies that carry out business in some particular fields were acquired from Capital Market Board, websites of Public Disclosure Platform and companies’ own websites. These reports were categorized into five main aspects: Environmental policies, environmental management systems, environmental protection and conservation activities, environmental awareness and information on environmental lawsuits. Subsequently, each component was divided into several variables related to what each firm is supposed to disclose about environmental information. In this context, the nature and scope of the information disclosed on each item were assessed according to five different ways (N.I: No Information; G.E.: General Explanations; Q.E.: Qualitative Detailed Explanations; N.E.: Quantitative (numerical) Detailed Explanations; Q.&N.E.: Both Qualitative and Quantitative Explanations).

Keywords: environmental accounting, disclosure, corporate governance, content analysis

Procedia PDF Downloads 258
6316 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi

Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel

Abstract:

Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oil- hydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.

Keywords: essential oil, Eucalyptus camendulensis, bacteria and fungi, red river gum

Procedia PDF Downloads 230
6315 Relative Clause Attachment Ambiguity Resolution in L2: the Role of Semantics

Authors: Hamideh Marefat, Eskandar Samadi

Abstract:

This study examined the effect of semantics on processing ambiguous sentences containing Relative Clauses (RCs) preceded by a complex Determiner Phrase (DP) by Persian-speaking learners of L2 English with different proficiency and Working Memory Capacities (WMCs). The semantic relationship studied was one between the subject of the main clause and one of the DPs in the complex DP to see if, as predicted by Spreading Activation Model, priming one of the DPs through this semantic manipulation affects the L2ers’ preference. The results of a task using Rapid Serial Visual Processing (time-controlled paradigm) showed that manipulation of the relationship between the subject of the main clause and one of the DPs in the complex DP preceding RC has no effect on the choice of the antecedent; rather, the L2ers' processing is guided by the phrase structure information. Moreover, while proficiency did not have any effect on the participants’ preferences, WMC brought about a difference in their preferences, with a DP1 preference by those with a low WMC. This finding supports the chunking hypothesis and the predicate proximity principle, which is the strategy also used by monolingual Persian speakers.

Keywords: semantics, relative clause processing, ambiguity resolution, proficiency, working memory capacity

Procedia PDF Downloads 619
6314 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method

Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy

Abstract:

In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.

Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence

Procedia PDF Downloads 274
6313 Non-Native and Invasive Fish Species in Poland

Authors: Tomasz Raczyński

Abstract:

Non-native and invasive species negatively transform ecosystems. Non-native fish species can displace native fish species through competition, predation, disrupting spawning, transforming ecosystems, or transmitting parasites. This influence is more and more noticeable in Poland and in the world. From December 2014 to October 2020, did catch of fishes by electrofishing method carried on 416 sites in various parts of Poland. Research was conducted in both running and stagnant freshwaters with the predominance of running waters. Only sites where the presence of fish was found were analysed. The research covered a wide spectrum of waters from small mountain streams, through drainage ditches to the largest Polish river - the Vistula. Single sites covered oxbow lakes, small ponds and lakes. Electrofishing was associated with ichthyofauna inventories and was mainly aimed at detecting protected species of fish and lampreys or included in the annexes to the EU Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora). The results of these catches were analysed for alien and invasive fish species. The analysis of the catch structure shows that in 71 out of 416 research sites was found alien and invasive fish species, belonging to 9 taxa. According to the above, alien species of fish are present in 17% of the study sites. The most frequently observed species was the Prussian carp Carassius gibelio, which was recorded on 43 sites. Stone moroko Pseudorasbora parva was found on 24 sites. Chinese sleeper Perccottus glenii was found on 6 sites, and Bullhead Ameiurus sp. was also found on 6 sites. Western tubenose goby Proterorhinus semilunaris was found at 5 sites and Rainbow trout Oncorhynchus mykiss at 3 sites. Monkey goby Neogobius fluviatilis, Round goby Neogobius melanostomus and Eurasian carp Cyprinus carpio was recorded on 2 sites.

Keywords: non-native species, invasive species, fish species, invasive fish species, native fish species

Procedia PDF Downloads 106
6312 Optimal Sputtering Conditions for Nickel-Cermet Anodes in Intermediate Temperature Solid Oxide Fuel Cells

Authors: Waqas Hassan Tanveer, Yoon Ho Lee, Taehyun Park, Wonjong Yu, Yaegeun Lee, Yusung Kim, Suk Won Cha

Abstract:

Nickel-Gadolinium Doped Ceria (Ni-GDC) cermet anodic thin films were prepared on Scandia Stabilized Zirconia (ScSZ) electrolyte supports by radio frequency (RF) sputtering, with a range of different sputtering powers (50 – 200W) and background Ar gas pressures (30 – 90mTorr). The effects of varying sputtering power and pressure on the properties of Ni-GDC films were studied using Focused Ion Beam (FIB), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) techniques. The Ni content was found to be always higher than the Ce content, at all sputtering conditions. This increased Ni content was attributed to significantly higher energy transfer efficiency of Ni ions as compared to Ce ions with Ar background sputtering gas. The solid oxide fuel cell configuration was completed by using lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. Performance comparison of cells was done by Voltage-Current-Power (VIP) curves, while the resistances of various cell components were observed by nyquist plots. Initial results showed that anode films made by higher powered RF sputtering performed better than lower powered ones for a specific Ar pressure. Interestingly, however, anodes made at highest power and pressure, were not the ones that showed the maximum power output at an intermediate solid oxide fuel cell temperature of 800°C. Finally, an optimal sputtering condition was reported for high performance Ni-GDC anodes.

Keywords: intermediate temperature solid oxide fuel cells, nickel-cermet anodic thin films, nyquist plots, radio frequency sputtering

Procedia PDF Downloads 233
6311 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China

Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han

Abstract:

Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.

Keywords: education policy-making, educational research, educational think tank, higher institution

Procedia PDF Downloads 156
6310 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 225
6309 Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas

Authors: Mateusz Szul, Tomasz Iluk, Aleksander Sobolewski

Abstract:

Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification.

Keywords: ash fusibility, gasification, piston engine, sewage sludge

Procedia PDF Downloads 192
6308 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 88
6307 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 217
6306 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 22
6305 Factors Constraining the Utilization of Risk Management Strategies in the Execution of Public Construction Projects in North East Nigeria

Authors: S. U. Kunya, S. A. Mohammad

Abstract:

Construction projects in Nigeria are characterized with risks emanating from delays and accompanying cost-overruns. The aim of the study was to identify and assess factors constraining the utilization of risk management strategies in the execution of public construction project in North-East Nigeria. Data was collected with the aid of a well-structured questionnaire administered to three identified projects in the North-east. Data collected were analysed using the severity index. Findings revealed political involvement, selection of inexperienced contractors and lack of coordinated public sector strategy as the most severe factors constraining the utilization of risk management strategies. The study recommended that: formulation of laws to prevent negative political meddling in construction projects; selection of experienced, risk-informed contractors; and comprehensive risk assessment and planning on all public construction projects.

Keywords: factors, Nigeria, north-east, public projects, risk management, strategies, utilization

Procedia PDF Downloads 525
6304 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez

Abstract:

Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.

Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma

Procedia PDF Downloads 226