Search results for: the creative learning process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21237

Search results for: the creative learning process

14967 Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria

Authors: Akpokiere Ugbede Roseline

Abstract:

Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry.

Keywords: instructional strategy, practical chemistry, learning outcomes, pre-service teachers

Procedia PDF Downloads 108
14966 Review on Japan Environmental Future City: Development, Critics and Cases

Authors: Runlang Zhu, Weijun Gao, Yinqi Zhang, Gangwei Cai

Abstract:

In order to deal with issues such as the environmental problems and aging of the population, the Japanese government wanted to achieve goals like 'a city where everyone wants to live' and 'a city full of energy for everyone' by creating environmental, social, and economic values in the process of urban development. They began to promote the concept of 'Environmental Future City' in 2010, aiming to create cities and regions with excellent environments, sustainable economic development, and social systems. After taking a look at the history, concept, and development of environmental future cities, the paper will discuss the evaluation system of them, introduce representative cases, and point out what other cities can learn from their development process.

Keywords: environmental future city, city concept, CASBEE, environmental performance assessment

Procedia PDF Downloads 159
14965 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 27
14964 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process

Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim

Abstract:

Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.

Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing

Procedia PDF Downloads 309
14963 Ottoman Marches Composed by European Musicians

Authors: Selcen Özyurt Ulutaş

Abstract:

March as a musical form in Ottoman Music has started after Sultan II. Mahmud. Owing to the modernization process on Ottoman Empire, marches had accepted and embraced by the sultanate in a short period of time. The reasons behind sultans favor against marches that is actually a European Music form is closely related to attribute meanings to marches. After Sultan II. Mahmud, marches became a symbol of westernization and became a symbol of sultanate. After that period besides sultans also princes started to compose marches. The presentation includes the demonstration of the marches classification in achieves to be able to give information on the composers of those marches. Through that process, this study aims to show attributed meanings to those marches and what those marches represent.

Keywords: Ottoman marches, music, Europe, European musicians

Procedia PDF Downloads 320
14962 Optimisation of Nitrogen as a Protective Gas via the Alternating Shielding Gas Technique in the Gas Metal Arc Welding Process

Authors: M. P. E. E Silva, A. M. Galloway, A. I. Toumpis

Abstract:

An increasing concern exists in the welding industry in terms of faster joining processes. Methods such as the alternation between shielding gases such Ar, CO₂ and He have been able to provide improved penetration of the joint, reduced heat transfer to the workpiece, and increased travel speeds of the welding torch. Nitrogen as a shielding gas is not desirable due to its reactive behavior within the arc plasma, being absorbed by the molten pool during the welding process. Below certain amounts, nitrogen is not harmful. However, the nitrogen threshold is reduced during the solidification of the joint, and if its subsequent desorption is not completed on time, gas entrapment and blowhole formation may occur. The present study expanded the use of the alternating shielding gas method in the gas metal arc welding (GMAW) process by alternately supplying Ar/5%N₂ and He. Improvements were introduced in terms of joint strength and grain refinement. Microstructural characterization findings showed porosity-free welds with reduced inclusion formation while mechanical tests such as tensile and bend tests confirmed the reinforcement of the joint by the addition of nitrogen. Additionally, significant reductions of the final distortion of the workpiece were found after the welding procedure as well as decreased heat affected zones and temperatures of the weld.

Keywords: alternating shielding gas method, GMAW, grain refinement, nitrogen, porosity, mechanical testing

Procedia PDF Downloads 115
14961 Theoretical Lens Driven Strategies for Emotional Wellbeing of Parents and Children in COVID-19 Era

Authors: Anamika Devi

Abstract:

Based on Vygotsky’s cultural, historical theory and Hedegaard’s concept of transition, this study aims to investigate to propose strategies to maintain digital wellbeing of children and parents during and post COVID pandemic. Due COVID 19 pandemic, children and families have been facing new challenges and sudden changes in their everyday life. While children are juggling to adjust themselves in new circumstance of onsite and online learning settings, parents are juggling with their work-life balance. A number of papers have identified that the COVID-19 pandemic has affected the lives of many families around the world in many ways, for example, the stress level of many parents increased, families faced financial difficulties, uncertainty impacted on long term effects on their emotional and social wellbeing. After searching and doing an intensive literature review from 2020 and 2021, this study has found some scholarly articles provided solution or strategies of reducing stress levels of parents and children in this unprecedented time. However, most of them are not underpinned by proper theoretical lens to ensure they validity and success. Therefore, this study has proposed strategies that are underpinned by theoretical lens to ensure their impact on children’s and parents' emotional wellbeing during and post COVID-19 era. The strategies will highlight on activities for positive coping strategies to the best use of family values and digital technologies.

Keywords: onsite and online learning, strategies, emotional wellbeing, tips, and strategies, COVID19

Procedia PDF Downloads 177
14960 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek

Abstract:

Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 30
14959 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies

Authors: Richard White, Anne Drabble, Maureen O’Neill

Abstract:

The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.

Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention

Procedia PDF Downloads 313
14958 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 234
14957 Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples

Authors: Seyedamirreza Shamsdini, Mohsen Mohammadi

Abstract:

In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms.

Keywords: additive manufacturing, maraging steel, mechanical properties, microstructure

Procedia PDF Downloads 165
14956 Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation

Authors: Kai-Sheng Ji, Yi-Feng Lin

Abstract:

The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes.

Keywords: pervaporation, chitosan, ZIF-7, memberane separation

Procedia PDF Downloads 435
14955 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction

Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai

Abstract:

The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.

Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction

Procedia PDF Downloads 439
14954 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 245
14953 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 103
14952 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 424
14951 The Tribological Behaviors of Vacuum Gas Nitriding Titanium and Steel Substrates at Different Process Temperatures

Authors: Hikmet Cicek

Abstract:

Metal nitrides show excellence tribological properties and they used for especially on machine parts. In this work, the vacuum gas nitriding proses were applied to the titanium, D2 and 52100 steel substrates at three different proses temperatures (500 °C, 600°C and 700 °C). Structural, mechanical and tribological properties of the samples were characterized. X-Ray diffractometer, scanning electron microscope and energy dispersive spectroscopy analyses were conducted to determine structural properties. Microhardness test and pin-on-disc wear test were made to observe tribological properties. Coefficient of friction, wear rate and wear traces were examined comparatively. According to the test results, the process temperature very effective parameter for the vacuum gas nitriding method.

Keywords: gas nitriding, tribology, wear, coating

Procedia PDF Downloads 203
14950 Possible Risks for Online Orders in the Furniture Industry - Customer and Entrepreneur Perspective

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

Data, is information processed by enterprises for primary and secondary purposes as processes. Thanks to processing, the sales process takes place; in the case of the surveyed companies, sales take place online. However, this indirect form of contact with the customer causes many problems for both customers and furniture manufacturers. The article presents solutions that would solve problems related to the analysis of data and information in the order fulfillment process sent to post-warranty service. The article also presents an analysis of threats to the security of this information, both for customers and the enterprise.

Keywords: ordering furniture online, information security, furniture industry, enterprise security, risk analysis

Procedia PDF Downloads 53
14949 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 435
14948 Integrated Design of Froth Flotation Process in Sludge Oil Recovery Using Cavitation Nanobubbles for Increase the Efficiency and High Viscose Compatibility

Authors: Yolla Miranda, Marini Altyra, Karina Kalmapuspita Imas

Abstract:

Oily sludge wastes always fill in upstream and downstream petroleum industry process. Sludge still contains oil that can use for energy storage. Recycling sludge is a method to handling it for reduce the toxicity and very probable to get the remaining oil around 20% from its volume. Froth flotation, a common method based on chemical unit for separate fine solid particles from an aqueous suspension. The basic composition of froth flotation is the capture of oil droplets or small solids by air bubbles in an aqueous slurry, followed by their levitation and collection in a froth layer. This method has been known as no intensive energy requirement and easy to apply. But the low efficiency and unable treat the high viscosity become the biggest problem in froth flotation unit. This study give the design to manage the high viscosity of sludge first and then entering the froth flotation including cavitation tube on it to change the bubbles into nano particles. The recovery in flotation starts with the collision and adhesion of hydrophobic particles to the air bubbles followed by transportation of the hydrophobic particle-bubble aggregate from the collection zone to the froth zone, drainage and enrichment of the froth, and finally by its overflow removal from the cell top. The effective particle separation by froth flotation relies on the efficient capture of hydrophobic particles by air bubbles in three steps. The important step is collision. Decreasing the bubble particles will increasing the collision effect. It cause the process more efficient. The pre-treatment, froth flotation, and cavitation tube integrated each other. The design shows the integrated unit and its process.

Keywords: sludge oil recovery, froth flotation, cavitation tube, nanobubbles, high viscosity

Procedia PDF Downloads 385
14947 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 160
14946 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 113
14945 The Marketing Mix in Small Sized Hotels: A Case of Pattaya, Thailand

Authors: Anyapak Prapannetivuth

Abstract:

The purpose of this research is to investigate the marketing mix that is perceived to be important for the small sized hotels in Pattaya. Unlike previous studies, this research provides insights through a review of the marketing activities performed by the small sized hotels. Nine owners and marketing manager of small sized hotels and resorts, all local Chonburi people, were selected for an in-depth interview. A snowball sampling process was employed. The research suggests that seven marketing mixes (e.g. Product, Price, Place, Promotion, People, Physical Evidence and Process) were commonly used by these hotels, however, three types – People, price and physical evidence were considered most important by the owners.

Keywords: marketing mix, marketing tools, small sized hotels, pattaya

Procedia PDF Downloads 290
14944 Attitudes of Nursing Students Towards Caring Nurse-Patient Interaction

Authors: Şefika Dilek Güven, Gülden Küçükakça

Abstract:

Objective: Learning the process of interaction with patient occurs within the process of nursing education. For this reason, it is considered to provide an opportunity for questioning and rearrangement of nursing education programs by assessing attitudes of nursing students towards caring nurse-patient interaction. Method: This is a descriptive study conducted in order to assess attitudes of nursing students towards caring nurse-patient interaction. The study was conducted with 318 students who were studying at nursing department of Semra and Vefa Küçük Health High School, Nevşehir Hacı Bektaş Veli University in 2015-2016 academic year and agreed to participate in the study. “Personal Information Form” prepared by the researchers utilizing the literature and “Caring Nurse-Patient Interaction Scale (CNPIS)”, who Turkish validity and reliability were conducted by Atar and Aştı, were used in the study. The Cronbach α coefficient of CNPIS was found as 0.973 in the study. Permissions of the institution and participants were received before starting to conduct study. Significance test of the difference between two means, analysis of variance, and correlation analysis were used to assess the data. Results: Average age of nursing students participating in the study was 20.72±1.91 and 74.8% were female, and 28.0% were the fourth-year students. 52.5% of the nursing students stated that they chose nursing profession willingly, 80.2% did not have difficulty in their interactions with patients, and 84.6% did not have difficulty in their social relationships. CNPIS total mean score of nursing students was found to be 295.31±40.95. When the correlation between total CNPIS mean score of the nursing students in terms of some variables was examined; it was determined there was a significant positive correlation between ages of the nursing students and total mean score of CNPIS (r=0.184, p=0.001). CNPIS total mean score was found to be higher in female students compared to male students, in 3rd–year students compared to students studying at other years, in those choosing their profession willingly compared to those choosing their profession unwillingly, in those not having difficulty in relations with the patients compared to those having difficulty, and in those not having difficulty in social relationships compared to those having difficulty. It was determined there was a significant difference between CNPIS total mean scores in terms of the year and state of having difficulty in social relationships (p<0,005). Conclusion: Nursing students had positive attitudes towards caring nurse-patient interactions, attitudes of nursing students, who were female, studying at 3rd year, chose nursing profession willingly, did not have difficulty in patient relations, and did not have difficulty in social relationships, towards caring nurse-patient interaction were found to be more positive. In the line with these results; it can be recommended to organize activities for introducing nursing profession to the youth preparing for the university, to use methods that will increase further communication skills to nursing students during their education, to support students in terms of communication skills, and to involve activities that will strengthen their social relationships.

Keywords: nurse-patient interaction, nursing student, patient, communication

Procedia PDF Downloads 226
14943 Andragogical Approach in Learning Animation to Promote Social, Cultural and Ethical Awareness While Enhancing Aesthetic Values

Authors: Juhanita Jiman

Abstract:

This paper aims to demonstrate how androgogical approach can help educators to facilitate animation students with better understanding of their acquired technical knowledge and skills while introducing them to crucial content and ethical values. In this borderless world, it is important for the educators to know that they are dealing with young adults who are heavily influenced by their surroundings. Naturally, educators are not only handling academic issues, they are also burdened with social obligations. Appropriate androgogical approach can be beneficial for both educators and students to tackle these problems. We used to think that teaching pedagogy is important at all level of age. Unfortunately, pedagogical approach is not entirely applicable to university students because they are no longer children. Pedagogy is a teaching approach focusing on children, whereas andragogy is specifically focussing on teaching adults and helping them to learn better. As adults mature, they become increasingly independent and responsible for their own actions. In many ways, the pedagogical model is not really suitable for such developmental changes, and therefore, produces tension, dissatisfaction, and resistance in individual student. The ever-changing technology has resulted in animation students to be very competitive in acquiring their technical skills, making them forget and neglecting the importance of the core values of a story. As educators, we have to guide them not only to excel in achieving knowledge, skills and technical expertise but at the same time, show them what is right or wrong and encourage them to inculcate moral values in their work.

Keywords: andragogy, animation, artistic contents, productive learning environment

Procedia PDF Downloads 283
14942 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 85
14941 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 143
14940 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 87
14939 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems: Chemical Tests

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: acid sulfuric, concrete, corrosion, biogenic

Procedia PDF Downloads 383
14938 Practicing Participatory Approach in Social Forestry to Strengthen Sustainability in a Rural Area of Bangladesh

Authors: A B M Enamol Hassan

Abstract:

The forest storing up in Bangladesh is of deep concern to policy analysts because of increasing encroachment that results in deforestation and degradation of the ecosystem. To address these problems, forest-dependent people, as responsible for encroachment, could be involved in the co-management process along with other local stakeholders through a participatory approach. On the basis of this premise, this paper conceptualizes and empirically assesses the integration of all stakeholders in the co-management process through two lenses such as participation and collaboration. The study also analyzed the issues of sustainability in local communities along with examining constraints that limit the processes of integration. The study used a qualitative research method, which included face-to-face interviews with semi-structured questionnaires and field notes following the purposive sampling technique focusing on Comilla Sadar South Upazila (CSSU), Bangladesh. The findings of this paper reveal beneficiaries, Bangladesh Forest Department (BFD) and Union Parishad (UP), come together as leading actors, while NGOs and business entrepreneurs are ignored in the co-management process of social forestry. However, integrated management contributes to the strength of community sustainability, although it has some major limitations causing the matter of concerns among the local communities and policy analysts.

Keywords: integration, participation, collaboration, stakeholders, community sustainability

Procedia PDF Downloads 182