Search results for: diagnostic assessment
431 Enhancing Students’ Academic Engagement in Mathematics through a “Concept+Language Mapping” Approach
Authors: Jodie Lee, Lorena Chan, Esther Tong
Abstract:
Hong Kong students face a unique learning environment. Starting from the 2010/2011 school year, The Education Bureau (EDB) of the Government of the Hong Kong Special Administrative Region implemented the fine-tuned Medium of Instruction (MOI) arrangements for secondary schools. Since then, secondary schools in Hong Kong have been given the flexibility to decide the most appropriate MOI arrangements for their schools and under the new academic structure for senior secondary education, particularly on the compulsory part of the mathematics curriculum. In 2019, Hong Kong Diploma of Secondary Education Examination (HKDSE), over 40% of school day candidates attempted the Mathematics Compulsory Part examination in the Chinese version while the rest took the English version. Moreover, only 14.38% of candidates sat for one of the extended Mathematics modules. This results in a serious of intricate issues to students’ learning in post-secondary education programmes. It is worth to note that when students further pursue to an higher education in Hong Kong or even oversea, they may facing substantial difficulties in transiting learning from learning mathematics in their mother tongue in Chinese-medium instruction (CMI) secondary schools to an English-medium learning environment. Some students understood the mathematics concepts were found to fail to fulfill the course requirements at college or university due to their learning experience in secondary study at CMI. They are particularly weak in comprehending the mathematics questions when they are doing their assessment or attempting the test/examination. A government funded project was conducted with the aims of providing integrated learning context and language support to students with a lower level of numeracy and/or with CMI learning experience. By introducing this “integrated concept + language mapping approach”, students can cope with the learning challenges in the compulsory English-medium mathematics and statistics subjects in their tertiary education. Ultimately, in the hope that students can enhance their mathematical ability, analytical skills, and numerical sense for their lifelong learning. The “Concept + Language Mapping “(CLM) approach was adopted and tried out in the bridging courses for students with a lower level of numeracy and/or with CMI learning experiences. At the beginning of each class, a pre-test was conducted, and class time was then devoted to introducing the concepts by CLM approach. For each concept, the key thematic items and their different semantic relations are presented using graphics and animations via the CLM approach. At the end of each class, a post-test was conducted. Quantitative data analysis was performed to study the effect on students’ learning via the CLM approach. Stakeholders' feedbacks were collected to estimate the effectiveness of the CLM approach in facilitating both content and language learning. The results based on both students’ and lecturers’ feedback indicated positive outcomes on adopting the CLM approach to enhance the mathematical ability and analytical skills of CMI students.Keywords: mathematics, Concept+Language Mapping, level of numeracy, medium of instruction
Procedia PDF Downloads 87430 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 92429 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy
Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu
Abstract:
The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis
Procedia PDF Downloads 69428 Nurture Early for Optimal Nutrition: A Community-Based Randomized Controlled Trial to Improve Infant Feeding and Care Practices Using Participatory Learning and Actions Approach
Authors: Priyanka Patil, Logan Manikam
Abstract:
Background: The first 1000 days of life are a critical window and can result in adverse health consequences due to inadequate nutrition. South-Asian (SA) communities face significant health disparities, particularly in maternal and child health. Community-based interventions, often employing Participatory-Learning and Action (PLA) approaches, have effectively addressed health inequalities in lower-income nations. The aim of this study was to assess the feasibility of implementing a PLA intervention to improve infant feeding and care practices in SA communities living in London. Methods: Comprehensive analyses were conducted to assess the feasibility/fidelity of this pilot randomized controlled trial. Summary statistics were computed to compare key metrics, including participant consent rates, attendance, retention, intervention support, and perceived effectiveness, against predefined progression rules guiding toward a definitive trial. Secondary outcomes were analyzed, drawing insights from multiple sources, such as The Children’s-Eating-Behaviour Questionnaire (CEBQ), Parental-Feeding-Style Questionnaires (PFSQ), Food-diary, and the Equality-Impact-Assessment (EIA) tool. A video analysis of children's mealtime behavior trends was conducted. Feedback interviews were collected from study participants. Results: Process-outcome measures met predefined progression rules for a definitive trial, which deemed the intervention as feasible and acceptable. The secondary outcomes analysis revealed no significant changes in children's BMI z-scores. This could be attributed to the abbreviated follow-up period of 6 months, reduced from 12 months, due to COVID-19-related delays. CEBQ analysis showed increased food responsiveness, along with decreased emotional over/undereating. A similar trend was observed in PFSQ. The EIA tool found no potential discrimination areas, and video analysis revealed a decrease in force-feeding practices. Participant feedback revealed improved awareness and knowledge sharing. Conclusion: This study demonstrates that a co-adapted PLA intervention is feasible and well-received in optimizing infant-care practices among South-Asian community members in a high-income country. These findings highlight the potential of community-based interventions to enhance health outcomes, promoting health equity.Keywords: child health, childhood obesity, community-based, infant nutrition
Procedia PDF Downloads 59427 Language Education Policy in Arab Schools in Israel
Authors: Fatin Mansour Daas
Abstract:
Language education responds to and is reflective of emerging social and political trends. Language policies and practices are shaped by political, economic, social and cultural considerations. Following this, Israeli language education policy as implemented in Arab schools in Israel is influenced by the particular political and social situation of Arab-Palestinian citizens of Israel. This national group remained in their homeland following the war in 1948 between Israel and its Arab neighbors and became Israeli citizens following the establishment of the State of Israel. This study examines language policy in Arab schools in Israel from 1948 until the present time in light of the unique experience of the Palestinian Arab homeland minority in Israel with a particular focus on questions of politics and identity. The establishment of the State of Israel triggered far-reaching political, social and educational transformations within Arab Palestinian society in Israel, including in the area of language and language studies. Since 1948, the linguistic repertoire of Palestinian Arabs in Israel has become more complex and diverse, while the place and status of different languages have changed. Following the establishment of the State of Israel, only Hebrew and Arabic were retained as the official languages, and Israeli policy reflected this in schools as well: with the advent of the Jewish state, Hebrew language education among Palestinians in Israel has increased. Similarly, in Arab Palestinian schools in Israel, English is taught as a third language, Hebrew as a second language, and Arabic as a first language – even though it has become less important to native Arabic speakers. This research focuses on language studies and language policy in the Arab school system in Israel from 1948 onwards. It will analyze the relative focus of language education between the different languages, the rationale of various language education policies, and the pedagogic approach used to teach each language and student achievements vis-à-vis language skills. This study seeks to understand the extent to which Arab schools in Israel are multi-lingual by examining successes, challenges and difficulties in acquiring the respective languages. This qualitative study will analyze five different components of language education policy: (1) curriculum, (2) learning materials; (3) assessment; (4) interviews and (5) archives. Firstly, it consists of an analysis examining language education curricula, learning materials and assessments used in Arab schools in Israel from 1948-2018 including a selection of language textbooks for the compulsory years of study and the final matriculation (Bagrut) examinations. The findings will also be based on archival material which traces the evolution of language education policy in Arabic schools in Israel from the years 1948-2018. This archival research, furthermore, will reveal power relations and general decision-making in the field of the Arabic education system in Israel. The research will also include interviews with Ministry of Education staff who provide instructional oversight in the instruction of the three languages in the Arabic education system in Israel. These interviews will shed light on the goals of language education as understood by those who are in charge of implementing policy.Keywords: language education policy, languages, multilingualism, language education, educational policy, identity, Palestinian-Arabs, Arabs in Israel, educational school system
Procedia PDF Downloads 94426 A Review on Assessment on the Level of Development of Macedonia and Iran Organic Agriculture as Compared to Nigeria
Authors: Yusuf Ahmad Sani, Adamu Alhaji Yakubu, Alhaji Abdullahi Jamilu, Joel Omeke, Ibrahim Jumare Sambo
Abstract:
With the rising global threat of food security, cancer, and related diseases (carcinogenic) because of increased usage of inorganic substances in agricultural food production, the Ministry of Food Agriculture and Livestock of the Republic of Turkey organized an International Workshop on Organic Agriculture between 8 – 12th December 2014 at the International Agricultural Research and Training Center, Izmir. About 21 countries, including Nigeria, were invited to attend the training workshop. Several topics on organic agriculture were presented by renowned scholars, ranging from regulation, certification, crop, animal, seed production, pest and disease management, soil composting, and marketing of organic agricultural products, among others. This paper purposely selected two countries (Macedonia and Iran) out of the 21 countries to assess their level of development in terms of organic agriculture as compared to Nigeria. Macedonia, with a population of only 2.1 million people as of 2014, started organic agriculture in 2005 with only 266ha of land and has grown significantly to over 5,000ha in 2010, covering such crops as cereals (62%), forage (20%) fruit orchard (7%), vineyards (5%), vegetables (4%), oil seed and industrial crops (1%) each. Others are organic beekeeping from 110 hives to over 15,000 certified colonies. As part of government commitment, the level of government subsidy for organic products was 30% compared to the direct support for conventional agricultural products. About 19 by-laws were introduced on organic agricultural production that was fully consistent with European Union regulations. The republic of Iran, on the other hand, embarked on organic agriculture for the fact, that the country recorded the highest rate of cancer disease in the world, with over 30,000 people dying every year and 297 people diagnosed every day. However, the host country, Turkey, is well advanced in organic agricultural production and now being the largest exporter of organic products to Europe and other parts of the globe. A technical trip to one of the villages that are under the government scheme on organic agriculture reveals that organic agriculture was based on market-demand-driven and the support of the government was very visible, linking the farmers with private companies that provide inputs to them while the companies purchase the products at harvest with high premium price. However, in Nigeria, research on organic agriculture was very recent, and there was very scanty information on organic agriculture due to poor documentation and very low awareness, even among the elites. The paper, therefore, recommends that the government should provide funds to NARIs to conduct research on organic agriculture and to establish clear government policy and good pre-conditions for sustainable organic agricultural production in the country.Keywords: organic agriculture, food security, food safety, food nutrition
Procedia PDF Downloads 56425 Assessing Mycotoxin Exposure from Processed Cereal-Based Foods for Children
Authors: Soraia V. M. de Sá, Miguel A. Faria, José O. Fernandes, Sara C. Cunha
Abstract:
Cereals play a vital role in fulfilling the nutritional needs of children, supplying essential nutrients crucial for their growth and development. However, concerns arise due to children's heightened vulnerability due to their unique physiology, specific dietary requirements, and relatively higher intake in relation to their body weight. This vulnerability exposes them to harmful food contaminants, particularly mycotoxins, prevalent in cereals. Because of the thermal stability of mycotoxins, conventional industrial food processing often falls short of eliminating them. Children, especially those aged 4 months to 12 years, frequently encounter mycotoxins through the consumption of specialized food products, such as instant foods, breakfast cereals, bars, cookie snacks, fruit puree, and various dairy items. A close monitoring of this demographic group's exposure to mycotoxins is essential, as toxins ingestion may weaken children’s immune systems, reduce their resistance to infectious diseases, and potentially lead to cognitive impairments. The severe toxicity of mycotoxins, some of which are classified as carcinogenic, has spurred the establishment and ongoing revision of legislative limits on mycotoxin levels in food and feed globally. While EU Commission Regulation 1881/2006 addresses well-known mycotoxins in processed cereal-based foods and infant foods, the absence of regulations specifically addressing emerging mycotoxins underscores a glaring gap in the regulatory framework, necessitating immediate attention. Emerging mycotoxins have gained mounting scrutiny in recent years due to their pervasive presence in various foodstuffs, notably cereals and cereal-based products. Alarmingly, exposure to multiple mycotoxins is hypothesized to exhibit higher toxicity than isolated effects, raising particular concerns for products primarily aimed at children. This study scrutinizes the presence of 22 mycotoxins of the diverse range of chemical classes in 148 processed cereal-based foods, including 39 breakfast cereals, 25 infant formulas, 27 snacks, 25 cereal bars, and 32 cookies commercially available in Portugal. The analytical approach employed a modified QuEChERS procedure followed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Given the paucity of information on the risk assessment of children to multiple mycotoxins in cereal and cereal-based products consumed by children of Portugal pioneers the evaluation of this critical aspect. Overall, aflatoxin B1 (AFB1) and aflatoxin G2 (AFG2) emerged as the most prevalent regulated mycotoxins, while enniatin B (ENNB) and sterigmatocystin (STG) were the most frequently detected emerging mycotoxins.Keywords: cereal-based products, children´s nutrition, food safety, UPLC-MS/MS analysis
Procedia PDF Downloads 74424 Contraceptive Uptake among Women in Low Socio-Economic Areas in Kenya: Quantitative Analysis of Secondary Data
Authors: J. Waita, S. Wamuhu, J. Makoyo, M. Rachel, T. Ngangari, W. Christine, M. Zipporah
Abstract:
Contraceptive use is one of the key global strategies to alleviate maternal mortality. Global efforts through advocating for contraceptive uptake and service provision has led improved contraceptive prevalence. In Kenya maternal mortality rate has remained a challenged despites efforts by government and non-governmental organizations. Objective: To describe the uptake of contraceptives among women in Tunza Clinics, Kenya. Design and Methods: Ps Kenya through health care marketing fund is implementing a family planning program among its 350 Tunza fractional franchise facilities. Through private partnership, private owned facilities in low socio-economic areas are recruited and trained on contraceptive technology update. The providers are supported through facilitative supervision through a mobile based application Health Network Quality Improvement System (HNQIS) and interpersonal communication through 150 community based volunteers. The data analyzed in this paper was collected between January to July 2017 to show the uptake of modern Contraceptives among women in the Tunza franchise, method mix, age and distribution among the age bracket. Further analysis compares two different service delivery strategies; outreach and walk ins. Supportive supervision HNQIS scores was analyzed. Results: During the time period, a total of 132121 family planning clients were attended in 350 facilities. The average age of clients was 29.6 years. The average number of clients attended in the facilities per month was 18874. 73.7 %( n=132121) of the clients attended in the Tunza facilities were aged above 25 years while 22.1% 20-24 years and 4.2% 15-19 years. On contraceptive method mix, intra uterine device insertions clients contributed to 7.5%, implant insertions 15.3%, pills 11.2%, injections 62.7% while condoms and emergency pills had 2.7% and 0.6% respectively. Analysis of service delivery strategy indicated more than 79% of the clients were walk ins while 21% were attended to during outreaches. Uptake of long term contraceptive methods during outreaches was 73% of the clients while short term modern methods were 27%. Health Network Quality Improvement system assessment scores indicated 51% of the facilities scored over 90%, 25% scoring 80-89% while 21% scored below 80%. Conclusion: Preference for short term methods by women is possibly associated to cost as they are cheaper and easy to administer. When the cost of intra uterine device Implants is meant affordable during outreaches, the uptake is observed to increase. Making intra uterine device and implants affordable to women is a key strategy in increasing contraceptive prevalence hence averting maternal mortality.Keywords: contraceptives, contraceptive uptake, low socio economic, supportive supervision
Procedia PDF Downloads 170423 Performance Assessment of a Three-Staged Natural Treatment Technology for On-Site Domestic Sewage Treatment
Authors: Harshvardhan Soni, Anil Kumar Dikshit, R. K. Pathak
Abstract:
Nowadays, a large amount of wastewater is being generated from cities and travels very long distances from their point of generation to their point of treatment, i.e., conventional centralized wastewater treatment plants (CCWTPs) which in turn results in several operational troubles due to heavy mechanized systems, also the large CCWTPs are sometimes even unable to handle these large volumes of wastewater being generated and the wastewater is either partially treated or sometimes may be even disposed of directly without any treatment into the water bodies, thus causing environmental problems. To overcome these operational troubles of heavily mechanized centralized treatment systems, there is a need for on-spot safe and complete treatment of wastewater being generated from various residential areas and areas such as holiday homes, industries, resorts, etc. These days, it is being felt, and in fact, several municipal corporations have already started requiring the proposed residential/commercial/industrial projects (i.e., where a conventional CCWTP is not there or not working or does not function properly or where there is a scarcity of freshwater supply) to take care of their wastewater within their premises, so that the effluent can be reused for a variety of non-potable uses including agriculture, irrigation, landscaping, surface storages, domestic uses, commercial uses, urban uses, environmental and recreational uses and industrial applications, and hence the freshwater demand of the area can be reduced. So, there's a need to design some specific units for some specific social needs and assess them and verify that they are capable of not only treating the sewage but also recycling the associated resources. Hence, there is a scope for decentralized/on-site treatment of sewage, which forms the basis for the research/innovation being proposed in this study. In view of that and considering the above requirements, for residential areas, a decentralized wastewater treatment plant (DWTP) (completely based on natural treatment technology to avoid heavy mechanized systems as in CCWTPs) was developed and deployed at the Indian Institute of Technology Bombay (IIT Bombay) campus, Mumbai, Maharashtra, India, to assess and evaluate its efficacy in long run. The system was deployed at the sewage pumping station of the campus for having a continuous 24 hours sewage flow into the system. The reactor configuration consists of an aerobic, facultative, and anaerobic tank as a pre-treatment unit followed by a planted gravel bed as a post-treatment unit in series. Results of the start-up period indicated that the system was very efficient/effective in the treatment of wastewater. The COD of the final effluent was found to be 29.7 mg/l; BOD was 0.7 mg/l, turbidity was 1.7 NTU, nitrate concentration was 1 mg/l, while the phosphorous concentration was 4.6 mg/l, and nearly all the parameters have very well complied with the reuse standards as per the Indian Standards. If seen on a daily basis also, turbidity has met the reuse standards around 92% of the time, COD around 84% of the time, and BOD and nitrates at all times.Keywords: centralized wastewater treatment systems, decentralized wastewater treatment systems, reuse, effluent
Procedia PDF Downloads 12422 Scalable Performance Testing: Facilitating The Assessment Of Application Performance Under Substantial Loads And Mitigating The Risk Of System Failures
Authors: Solanki Ravirajsinh
Abstract:
In the software testing life cycle, failing to conduct thorough performance testing can result in significant losses for an organization due to application crashes and improper behavior under high user loads in production. Simulating large volumes of requests, such as 5 million within 5-10 minutes, is challenging without a scalable performance testing framework. Leveraging cloud services to implement a performance testing framework makes it feasible to handle 5-10 million requests in just 5-10 minutes, helping organizations ensure their applications perform reliably under peak conditions. Implementing a scalable performance testing framework using cloud services and tools like JMeter, EC2 instances (Virtual machine), cloud logs (Monitor errors and logs), EFS (File storage system), and security groups offers several key benefits for organizations. Creating performance test framework using this approach helps optimize resource utilization, effective benchmarking, increased reliability, cost savings by resolving performance issues before the application is released. In performance testing, a master-slave framework facilitates distributed testing across multiple EC2 instances to emulate many concurrent users and efficiently handle high loads. The master node orchestrates the test execution by coordinating with multiple slave nodes to distribute the workload. Slave nodes execute the test scripts provided by the master node, with each node handling a portion of the overall user load and generating requests to the target application or service. By leveraging JMeter's master-slave framework in conjunction with cloud services like EC2 instances, EFS, CloudWatch logs, security groups, and command-line tools, organizations can achieve superior scalability and flexibility in their performance testing efforts. In this master-slave framework, JMeter must be installed on both the master and each slave EC2 instance. The master EC2 instance functions as the "brain," while the slave instances operate as the "body parts." The master directs each slave to execute a specified number of requests. Upon completion of the execution, the slave instances transmit their results back to the master. The master then consolidates these results into a comprehensive report detailing metrics such as the number of requests sent, encountered errors, network latency, response times, server capacity, throughput, and bandwidth. Leveraging cloud services, the framework benefits from automatic scaling based on the volume of requests. Notably, integrating cloud services allows organizations to handle more than 5-10 million requests within 5 minutes, depending on the server capacity of the hosted website or application.Keywords: identify crashes of application under heavy load, JMeter with cloud Services, Scalable performance testing, JMeter master and slave using cloud Services
Procedia PDF Downloads 34421 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers
Authors: Navah Z. Ratzon, Rachel Shichrur
Abstract:
Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention
Procedia PDF Downloads 348420 Mycotoxin Bioavailability in Sparus Aurata Muscle After Human Digestion and Intestinal Transport (Caco-2/HT-29 Cells) Simulation
Authors: Cheila Pereira, Sara C. Cunha, Miguel A. Faria, José O. Fernandes
Abstract:
The increasing world population brings several concerns, one of which is food security and sustainability. To meet this challenge, aquaculture, the farming of aquatic animals and plants, including fish, mollusks, bivalves, and algae, has experienced sustained growth and development in recent years. Recent advances in this industry have focused on reducing its economic and environmental costs, for example, the substitution of protein sources in fish feed. Plant-based proteins are now a common approach, and while it is a greener alternative to animal-based proteins, there are some disadvantages, such as their putative content and intoxicants such as mycotoxins. These are naturally occurring plant contaminants, and their exposure in fish can cause health problems, stunted growth or even death, resulting in economic losses for the producers and health concerns for the consumers. Different works have demonstrated the presence of both AFB1 (aflatoxin B1) and ENNB1 (enniatin B1) in fish feed and their capacity to be absorbed and bioaccumulate in the fish organism after digestion, further reaching humans through fish ingestion. The aim of this work was to evaluate the bioaccessibility of both mycotoxins in samples of Sparus aurata muscle using a static digestion model based on the INFOGEST protocol. The samples were subjected to different cooking procedures – raw, grilled and fried – and different seasonings – none, thyme and ginger – in order to evaluate their potential reduction effect on mycotoxins bioaccessibility, followed by the evaluation of the intestinal transport of both compounds with an in vitro cell model composed of Caco-2/HT-29 co-culture monolayers, simulating the human intestinal epithelium. The bioaccessible fractions obtained in the digestion studies were used in the transport studies for a more realistic approach to bioavailability evaluation. Results demonstrated the effect of the use of different cooking procedures and seasoning on the toxin's bioavailability. Sparus aurata was chosen in this study for its large production in aquaculture and high consumption in Europe. Also, with the continued evolution of fish farming practices and more common usage of novel feed ingredients based on plants, there is a growing concern about less studied contaminants in aquaculture and their consequences for human health. In pair with greener advances in this industry, there is a convergence towards alternative research methods, such as in vitro applications. In the case of bioavailability studies, both in vitro digestion protocols and intestinal transport assessment are excellent alternatives to in vivo studies. These methods provide fast, reliable and comparable results without ethical restraints.Keywords: AFB1, aquaculture, bioaccessibility, ENNB1, intestinal transport.
Procedia PDF Downloads 69419 Combining Patients Pain Scores Reports with Functionality Scales in Chronic Low Back Pain Patients
Authors: Ivana Knezevic, Kenneth D. Candido, N. Nick Knezevic
Abstract:
Background: While pain intensity scales remain generally accepted assessment tool, and the numeric pain rating score is highly subjective, we nevertheless rely on them to make a judgment about treatment effects. Misinterpretation of pain can lead practitioners to underestimate or overestimate the patient’s medical condition. The purpose of this study was to analyze how the numeric rating pain scores given by patients with low back pain correlate with their functional activity levels. Methods: We included 100 consecutive patients with radicular low back pain (LBP) after the Institutional Review Board (IRB) approval. Pain scores, numeric rating scale (NRS) responses at rest and in the movement,Oswestry Disability Index (ODI) questionnaire answers were collected 10 times through 12 months. The ODI questionnaire is targeting a patient’s activities and physical limitations as well as a patient’s ability to manage stationary everyday duties. Statistical analysis was performed by using SPSS Software version 20. Results: The average duration of LBP was 14±22 months at the beginning of the study. All patients included in the study were between 24 and 78 years old (average 48.85±14); 56% women and 44% men. Differences between ODI and pain scores in the range from -10% to +10% were considered “normal”. Discrepancies in pain scores were graded as mild between -30% and -11% or +11% and +30%; moderate between -50% and -31% and +31% and +50% and severe if differences were more than -50% or +50%. Our data showed that pain scores at rest correlate well with ODI in 65% of patients. In 30% of patients mild discrepancies were present (negative in 21% and positive in 9%), 4% of patients had moderate and 1% severe discrepancies. “Negative discrepancy” means that patients graded their pain scores much higher than their functional ability, and most likely exaggerated their pain. “Positive discrepancy” means that patients graded their pain scores much lower than their functional ability, and most likely underrated their pain. Comparisons between ODI and pain scores during movement showed normal correlation in only 39% of patients. Mild discrepancies were present in 42% (negative in 39% and positive in 3%); moderate in 14% (all negative), and severe in 5% (all negative) of patients. A 58% unknowingly exaggerated their pain during movement. Inconsistencies were equal in male and female patients (p=0.606 and p=0.928).Our results showed that there was a negative correlation between patients’ satisfaction and the degree of reporting pain inconsistency. Furthermore, patients talking opioids showed more discrepancies in reporting pain intensity scores than did patients taking non-opioid analgesics or not taking medications for LBP (p=0.038). There was a highly statistically significant correlation between morphine equivalents doses and the level of discrepancy (p<0.0001). Conclusion: We have put emphasis on the patient education in pain evaluation as a vital step in accurate pain level reporting. We have showed a direct correlation with patients’ satisfaction. Furthermore, we must identify other parameters in defining our patients’ chronic pain conditions, such as functionality scales, quality of life questionnaires, etc., and should move away from an overly simplistic subjective rating scale.Keywords: pain score, functionality scales, low back pain, lumbar
Procedia PDF Downloads 235418 Quality of Life Responses of Students with Intellectual Disabilities Entering an Inclusive, Residential Post-Secondary Program
Authors: Mary A. Lindell
Abstract:
Adults with intellectual disabilities (ID) are increasingly attending postsecondary institutions, including inclusive residential programs at four-year universities. The legislation, national organizations, and researchers support developing postsecondary education (PSE) options for this historically underserved population. Simultaneously, researchers are assessing the quality of life indicators (QOL) for people with ID. This study explores the quality of life characteristics for individuals with ID entering a two-year PSE program. A survey aligned with the PSE program was developed and administered to participants before they began their college program (in future studies, the same survey will be administered 6 months and 1 year after graduating). Employment, income, and housing are frequently cited QOL measures. People with disabilities, and especially people with ID, are more likely to experience unemployment and low wages than people without disabilities. PSE improves adult outcomes (e.g., employment, income, housing) for people with and without disabilities. Similarly, adults with ID who attend PSE are more likely to be employed than their peers who do not attend PSE; however, adults with ID are least likely among their typical peers and other students with disabilities to attend PSE. There is increased attention to providing individuals with ID access to PSE and more research is needed regarding the characteristics of students attending PSE. This study focuses on the participants of a fully residential two-year program for individuals with ID. Students earn an Applied Skills Certificate while focusing on five benchmarks: self-care, home care, relationships, academics, and employment. To create a QOL measure, the goals of the PSE program were identified, and possible assessment items were initially selected from the National Core Indicators (NCI) and the National Transition Longitudinal Survey 2 (NTLS2) that aligned with the five program goals. Program staff and advisory committee members offered input on potential item alignment with program goals and expected value to students with ID in the program. National experts in researching QOL outcomes of people with ID were consulted and concurred that the items selected would be useful in measuring the outcomes of postsecondary students with ID. The measure was piloted, modified, and administered to incoming students with ID. Research questions: (1) In what ways are students with ID entering a two-year PSE program similar to individuals with ID who complete the NCI and NTLS2 surveys? (2) In what ways are students with ID entering a two-year PSE program different than individuals with ID who completed the NCI and NTLS2 surveys? The process of developing a QOL measure specific to a PSE program for individuals with ID revealed that many of the items in comprehensive national QOL measures are not relevant to stake-holders of this two-year residential inclusive PSE program. Specific responses of students with ID entering an inclusive PSE program will be presented as well as a comparison to similar items on national QOL measures. This study explores the characteristics of students with ID entering a residential, inclusive PSE program. This information is valuable for, researchers, educators, and policy makers as PSE programs become more accessible for individuals with ID.Keywords: intellectual disabilities, inclusion, post-secondary education, quality of life
Procedia PDF Downloads 103417 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 70416 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial
Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra
Abstract:
Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke
Procedia PDF Downloads 283415 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 108414 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 295413 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold
Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher
Abstract:
Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve
Procedia PDF Downloads 147412 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India
Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh
Abstract:
Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.Keywords: 3D analysis, Himalayan geology, shear zone, underground power house
Procedia PDF Downloads 92411 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology
Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki
Abstract:
The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine
Procedia PDF Downloads 264410 Examining College Students’ Attitudes toward Diversity Environments in a Physical Activity Course
Authors: Young Ik Suh, Sanghak Lee, Tae Wook Chung
Abstract:
In recent year, cultural diversity has acquired increasing attentions in our society due to the cultural pluralism and globalization. With the emphasis of diversity in our society, higher education has played a significant role in preparing people to be successful in a diverse world. A number of colleges and universities provide various diversity-related courses that enhance students to recognize the importance of diversity and multiculturalism. However, little research has been conducted with diversity environments in physical activity and sports-related courses to appreciate students’ attitudes toward multiculturalism. Physical activity courses can be regarded as an essential and complementary part of general education. As well, playing and watching certain sports plays a critical role to foster mutual understanding between different races and to help social integration for minority communities. Therefore, it is expected that the appropriate diverse environments in physical activity courses may have a positive impact to the understandings of different cultures and races. The primary purpose of this study is to examine attitudes toward cultural diversity in a physical activity course among undergraduate students. In building on the scholarly foundation in this area, this study applies the established survey scale (e.g., Pluralism and Diversity Attitude Assessment [PADAA]) developed by Stanley (1996) and previous literature related to cultural diversity. The PADAA includes 19 questions. The following two research hypotheses were proposed. H1: Students who take a diversity-related physical course (i.e., Taekwondo) will provide positive attitude changes toward their cultural diversity. H2: Students who take a general physical activity course (i.e., Weight Training) will provide no significant attitude changes toward their cultural diversity. To test the research hypotheses, subjects will be selected from the both Taekwondo and Weight Training class at University of West Georgia. In the Taekwondo class, students will learn the history, meaning, basic terminology, and physical skills, which is a Korean martial art and the national sport of Korea. In the Weight Training class, students will not be exposed to any cultural diversity topics. Regarding data analysis, Doubly Multivariate Analysis of Covariance (Doubly MANCOVA), 2 (time period: pre and after) X 2 (diversity-related content exposure: Taekwondo and Weight Training), will be conducted on attitudes toward the cultural diversity with control variables such as gender and age. The findings of this study will add to the body of literature in cultural diversity because this will be the first known attempt to explain the college students’ attitudes toward cultural diversity in a physical activity courses. The expected results will state that the physical activity course focusing on diversity issues will have a positive impact on college students’ attitude toward cultural diversity. This finding will indicate that Universities need to create diverse programs (e.g., study abroad, exchange program, second language courses) and environments so that students can have positive interactions with other groups of races and different cultures. It is also expected that the positive perceptions and attitudes toward cultural diversity will break down cultural barriers and make students be ready for meeting several challenges in a multicultural and global society.Keywords: cultural diversity, physical activity course, attitude, Taekwondo
Procedia PDF Downloads 271409 Contribution of Word Decoding and Reading Fluency on Reading Comprehension in Young Typical Readers of Kannada Language
Authors: Vangmayee V. Subban, Suzan Deelan. Pinto, Somashekara Haralakatta Shivananjappa, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: During early years of schooling, the instruction in the schools mainly focus on children’s word decoding abilities. However, the skilled readers should master all the components of reading such as word decoding, reading fluency and comprehension. Nevertheless, the relationship between each component during the process of learning to read is less clear. The studies conducted in alphabetical languages have mixed opinion on relative contribution of word decoding and reading fluency on reading comprehension. However, the scenarios in alphasyllabary languages are unexplored. Aim and Objectives: The aim of the study was to explore the role of word decoding, reading fluency on reading comprehension abilities in children learning to read Kannada between the age ranges of 5.6 to 8.6 years. Method: In this cross sectional study, a total of 60 typically developing children, 20 each from Grade I, Grade II, Grade III maintaining equal gender ratio between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. The reading fluency and reading comprehension abilities of the children were assessed using Grade level passages selected from the Kannada text book of children core curriculum. All the passages consist of five questions to assess reading comprehension. The pseudoword decoding skills were assessed using 40 pseudowords with varying syllable length and their Akshara composition. Pseudowords are formed by interchanging the syllables within the meaningful word while maintaining the phonotactic constraints of Kannada language. The assessment material was subjected to content validation and reliability measures before collecting the data on the study samples. The data were collected individually, and reading fluency was assessed for words correctly read per minute. Pseudoword decoding was scored for the accuracy of reading. Results: The descriptive statistics indicated that the mean pseudoword reading, reading comprehension, words accurately read per minute increased with the Grades. The performance of Grade III children found to be higher, Grade I lower and Grade II remained intermediate of Grade III and Grade I. The trend indicated that reading skills gradually improve with the Grades. Pearson’s correlation co-efficient showed moderate and highly significant (p=0.00) positive co-relation between the variables, indicating the interdependency of all the three components required for reading. The hierarchical regression analysis revealed 37% variance in reading comprehension was explained by pseudoword decoding and was highly significant. Subsequent entry of reading fluency measure, there was no significant change in R-square and was only change 3%. Therefore, pseudoword-decoding evolved as a single most significant predictor of reading comprehension during early Grades of reading acquisition. Conclusion: The present study concludes that the pseudoword decoding skills contribute significantly to reading comprehension than reading fluency during initial years of schooling in children learning to read Kannada language.Keywords: alphasyllabary, pseudo-word decoding, reading comprehension, reading fluency
Procedia PDF Downloads 266408 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 576407 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 18406 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells
Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska
Abstract:
Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells
Procedia PDF Downloads 485405 Advancements in Electronic Sensor Technologies for Tea Quality Evaluation
Authors: Raana Babadi Fathipour
Abstract:
Tea, second only to water in global consumption rates, holds a significant place as the beverage of choice for many around the world. The process of fermenting tea leaves plays a crucial role in determining its ultimate quality, traditionally assessed through meticulous observation by tea tasters and laboratory analysis. However, advancements in technology have paved the way for innovative electronic sensing platforms like the electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye). These cutting-edge tools, coupled with sophisticated data processing algorithms, not only expedite the assessment of tea's sensory qualities based on consumer preferences but also establish new benchmarks for this esteemed bioactive product to meet burgeoning market demands worldwide. By harnessing intricate data sets derived from electronic signals and deploying multivariate statistical techniques, these technological marvels can enhance accuracy in predicting and distinguishing tea quality with unparalleled precision. In this contemporary exploration, a comprehensive overview is provided of the most recent breakthroughs and viable solutions aimed at addressing forthcoming challenges in the realm of tea analysis. Utilizing bio-mimicking Electronic Sensory Perception systems (ESPs), researchers have developed innovative technologies that enable precise and instantaneous evaluation of the sensory-chemical attributes inherent in tea and its derivatives. These sophisticated sensing mechanisms are adept at deciphering key elements such as aroma, taste, and color profiles, transitioning valuable data into intricate mathematical algorithms for classification purposes. Through their adept capabilities, these cutting-edge devices exhibit remarkable proficiency in discerning various teas with respect to their distinct pricing structures, geographic origins, harvest epochs, fermentation processes, storage durations, quality classifications, and potential adulteration levels. While voltammetric and fluorescent sensor arrays have emerged as promising tools for constructing electronic tongue systems proficient in scrutinizing tea compositions, potentiometric electrodes continue to serve as reliable instruments for meticulously monitoring taste dynamics within different tea varieties. By implementing a feature-level fusion strategy within predictive models, marked enhancements can be achieved regarding efficiency and accuracy levels. Moreover, by establishing intrinsic linkages through pattern recognition methodologies between sensory traits and biochemical makeup found within tea samples, further strides are made toward enhancing our understanding of this venerable beverage's complex nature.Keywords: classifier system, tea, polyphenol, sensor, taste sensor
Procedia PDF Downloads 10404 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 76403 Nursing Experience in the Intensive Care of a Lung Cancer Patient with Pulmonary Embolism on Extracorporeal Membrane Oxygenation
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a lung cancer patient with pulmonary embolism who was placed on ECMO. Following a sudden change in the patient’s condition and a consensus reached during a family meeting, the decision was made to withdraw life-sustaining equipment and collaborate with the palliative care team. Methods: The nursing period was from October 20 to October 27, 2023. The author monitored physiological data, observed, provided direct care, conducted interviews, performed physical assessments, and reviewed medical records. Together with the critical care team and bypass personnel, a comprehensive assessment was conducted using Gordon's Eleven Functional Health Patterns to identify the patient’s health issues, which included pain related to lung cancer and invasive devices, fear of death due to sudden deterioration, and altered tissue perfusion related to hemodynamic instability. Results: The patient was admitted with fever, back pain, and painful urination. During hospitalization, the patient experienced sudden discomfort followed by cardiac arrest, requiring multiple CPR attempts and ECMO placement. A subsequent CT angiogram revealed a pulmonary embolism. The patient's condition was further complicated by severe pain due to compression fractures, and a diagnosis of terminal lung cancer was unexpectedly confirmed, leading to emotional distress and uncertainty about future treatment. Throughout the critical care process, ECMO was removed on October 24, stabilizing the patient’s body temperature between 36.5-37°C and maintaining a mean arterial pressure of 60-80 mmHg. Pain management, including Morphine 8mg in 0.9% N/S 100ml IV drip q6h PRN and Ultracet 37.5 mg/325 mg 1# PO q6h, kept the pain level below 3. The patient was transferred to the ward on October 27 and discharged home on October 30. Conclusion: During the care period, collaboration with the medical team and palliative care professionals was crucial. Adjustments to pain medication, symptom management, and lung cancer-targeted therapy improved the patient’s physical discomfort and pain levels. By applying the unique functions of nursing and the four principles of palliative care, positive encouragement was provided. Family members, along with social workers, clergy, psychologists, and nutritionists, participated in cross-disciplinary care, alleviating anxiety and fear. The consensus to withdraw ECMO and life-sustaining equipment enabled the patient and family to receive high-quality care and maintain autonomy in decision-making. A follow-up call on November 1 confirmed that the patient was emotionally stable, pain-free, and continuing with targeted lung cancer therapy.Keywords: intensive care, lung cancer, pulmonary embolism, ECMO
Procedia PDF Downloads 35402 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 270