Search results for: workload scheduling
53 The Effect of Emotional Intelligence on Physiological Stress of Managers
Authors: Mikko Salminen, Simo Järvelä, Niklas Ravaja
Abstract:
One of the central models of emotional intelligence (EI) is that of Mayer and Salovey’s, which includes ability to monitor own feelings and emotions and those of others, ability to discriminate different emotions, and to use this information to guide thinking and actions. There is vast amount of previous research where positive links between EI and, for example, leadership successfulness, work outcomes, work wellbeing and organizational climate have been reported. EI has also a role in the effectiveness of work teams, and the effects of EI are especially prominent in jobs requiring emotional labor. Thus, also the organizational context must be taken into account when considering the effects of EI on work outcomes. Based on previous research, it is suggested that EI can also protect managers from the negative consequences of stress. Stress may have many detrimental effects on the manager’s performance in essential work tasks. Previous studies have highlighted the effects of stress on, not only health, but also, for example, on cognitive tasks such as decision-making, which is important in managerial work. The motivation for the current study came from the notion that, unfortunately, many stressed individuals may not be aware of the circumstance; periods of stress-induced physiological arousal may be prolonged if there is not enough time for recovery. To tackle this problem, physiological stress levels of managers were collected using recording of heart rate variability (HRV). The goal was to use this data to provide the managers with feedback on their stress levels. The managers could access this feedback using a www-based learning environment. In the learning environment, in addition to the feedback on stress level and other collected data, also developmental tasks were provided. For example, those with high stress levels were sent instructions for mindfulness exercises. The current study focuses on the relation between the measured physiological stress levels and EI of the managers. In a pilot study, 33 managers from various fields wore the Firstbeat Bodyguard HRV measurement devices for three consecutive days and nights. From the collected HRV data periods (minutes) of stress and recovery were detected using dedicated software. The effects of EI on HRV-calculated stress indexes were studied using Linear Mixed Models procedure in SPSS. There was a statistically significant effect of total EI, defined as an average score of Schutte’s emotional intelligence test, on the percentage of stress minutes during the whole measurement period (p=.025). More stress minutes were detected on those managers who had lower emotional intelligence. It is suggested, that high EI provided managers with better tools to cope with stress. Managing of own emotions helps the manager in controlling possible negative emotions evoked by, e.g., critical feedback or increasing workload. High EI managers may also be more competent in detecting emotions of others, which would lead to smoother interactions and less conflicts. Given the recent trend to different quantified-self applications, it is suggested that monitoring of bio-signals would prove to be a fruitful direction to further develop new tools for managerial and leadership coaching.Keywords: emotional intelligence, leadership, heart rate variability, personality, stress
Procedia PDF Downloads 22152 Maternal Risk Factors Associated with Low Birth Weight Neonates in Pokhara, Nepal: A Hospital Based Case Control Study
Authors: Dipendra Kumar Yadav, Nabaraj Paudel, Anjana Yadav
Abstract:
Background: Low Birth weight (LBW) is defined as the weight at birth less than 2500 grams, irrespective of the period of their gestation. LBW is an important indicator of general health status of population and is considered as the single most important predictors of infant mortality especially of deaths within the first month of life that is birth weight determines the chances of newborn survival. Objective of this study was to identify the maternal risk factors associated with low birth weight neonates. Materials and Methods: A hospital based case-control study was conducted in maternity ward of Manipal Teaching Hospital, Pokhara, Nepal from 23 September 2014 to 12 November 2014. During study period 59 cases were obtained and twice number of control group were selected with frequency matching of the mother`s age with ± 3 years and total controls were 118. Interview schedule was used for data collection along with record review. Data were entered in Epi-data program and analysis was done with help of SPSS software program. Results: From bivariate logistic regression analysis, eighteen variables were found significantly associated with LBW and these were place of residence, family monthly income, education, previous still birth, previous LBW, history of STD, history of vaginal bleeding, anemia, ANC visits, less than four ANC visits, de-worming status, counseling during pregnancy, CVD, physical workload, stress, extra meal during pregnancy, smoking and alcohol consumption status. However after adjusting confounding variables, only six variables were found significantly associated with LBW. Mothers who had family monthly income up to ten thousand rupees were 4.83 times more likely to deliver LBW with CI (1.5-40.645) and p value 0.014 compared to mothers whose family income NRs.20,001-60,000. Mothers who had previous still birth were 2.01 times more likely to deliver LBW with CI (0.69-5.87) and p value 0.02 compared to mothers who did not has previous still birth. Mothers who had previous LBW were 5.472 times more likely to deliver LBW with CI (1.2-24.93) and p value 0.028 compared to mothers who did not has previous LBW. Mothers who had anemia during pregnancy were 3.36 times more likely to deliver LBW with CI (0.77-14.57) and p value 0.014 compared to mothers who did not has anemia. Mothers who delivered female newborn were 2.96 times more likely to have LBW with 95% CI (1.27-7.28) and p value 0.01 compared to mothers who deliver male newborn. Mothers who did not get extra meal during pregnancy were 6.04 times more likely to deliver LBW with CI (1.11-32.7) and p value 0.037 compared to mothers who getting the extra meal during pregnancy. Mothers who consumed alcohol during pregnancy were 4.83 times more likely to deliver LBW with CI (1.57-14.83) and p value 0.006 compared to mothers who did not consumed alcohol during pregnancy. Conclusions: To reduce low birth weight baby through economic empowerment of family and individual women. Prevention and control of anemia during pregnancy is one of the another strategy to control the LBW baby and mothers should take full dose of iron supplements with screening of haemoglobin level. Extra nutritional food should be provided to women during pregnancy. Health promotion program will be focused on avoidance of alcohol and strengthen of health services that leads increasing use of maternity services.Keywords: low birth weight, case-control, risk factors, hospital based study
Procedia PDF Downloads 29951 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks
Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo
Abstract:
In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm
Procedia PDF Downloads 22750 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 4149 Comparison of the Chest X-Ray and Computerized Tomography Scans Requested from the Emergency Department
Authors: Sahabettin Mete, Abdullah C. Hocagil, Hilal Hocagil, Volkan Ulker, Hasan C. Taskin
Abstract:
Objectives and Goals: An emergency department is a place where people can come for a multitude of reasons 24 hours a day. As it is an easy, accessible place, thanks to self-sacrificing people who work in emergency departments. But the workload and overcrowding of emergency departments are increasing day by day. Under these circumstances, it is important to choose a quick, easily accessible and effective test for diagnosis. This results in laboratory and imaging tests being more than 40% of all emergency department costs. Despite all of the technological advances in imaging methods and available computerized tomography (CT), chest X-ray, the older imaging method, has not lost its appeal and effectiveness for nearly all emergency physicians. Progress in imaging methods are very convenient, but physicians should consider the radiation dose, cost, and effectiveness, as well as imaging methods to be carefully selected and used. The aim of the study was to investigate the effectiveness of chest X-ray in immediate diagnosis against the advancing technology by comparing chest X-ray and chest CT scan results of the patients in the emergency department. Methods: Patients who applied to Bulent Ecevit University Faculty of Medicine’s emergency department were investigated retrospectively in between 1 September 2014 and 28 February 2015. Data were obtained via MIAMED (Clear Canvas Image Server v6.2, Toronto, Canada), information management system which patients’ files are saved electronically in the clinic, and were retrospectively scanned. The study included 199 patients who were 18 or older, had both chest X-ray and chest CT imaging. Chest X-ray images were evaluated by the emergency medicine senior assistant in the emergency department, and the findings were saved to the study form. CT findings were obtained from already reported data by radiology department in the clinic. Chest X-ray was evaluated with seven questions in terms of technique and dose adequacy. Patients’ age, gender, application complaints, comorbid diseases, vital signs, physical examination findings, diagnosis, chest X-ray findings and chest CT findings were evaluated. Data saved and statistical analyses have made via using SPSS 19.0 for Windows. And the value of p < 0.05 were accepted statistically significant. Results: 199 patients were included in the study. In 38,2% (n=76) of all patients were diagnosed with pneumonia and it was the most common diagnosis. The chest X-ray imaging technique was appropriate in patients with the rate of 31% (n=62) of all patients. There was not any statistically significant difference (p > 0.05) between both imaging methods (chest X-ray and chest CT) in terms of determining the rates of displacement of the trachea, pneumothorax, parenchymal consolidation, increased cardiothoracic ratio, lymphadenopathy, diaphragmatic hernia, free air levels in the abdomen (in sections including the image), pleural thickening, parenchymal cyst, parenchymal mass, parenchymal cavity, parenchymal atelectasis and bone fractures. Conclusions: When imaging findings, showing cases that needed to be quickly diagnosed, were investigated, chest X-ray and chest CT findings were matched at a high rate in patients with an appropriate imaging technique. However, chest X-rays, evaluated in the emergency department, were frequently taken with an inappropriate technique.Keywords: chest x-ray, chest computerized tomography, chest imaging, emergency department
Procedia PDF Downloads 19248 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 4647 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 24446 Meeting the Health Needs of Adolescents and Young Adults: Developing and Evaluating an Electronic Questionnaire and Health Report Form, for the Health Assessment at Youth Health Clinics – A Mixed Methods Project
Authors: P.V. Lostelius, M.Mattebo, E. Thors Adolfsson, A. Söderlund, Å. Revenäs
Abstract:
Adolescents are vulnerable in healthcare settings. Early detection of poor health in young people is important to support a good quality of life and adult social functioning. Youth Health Clinics (YHCs) in Sweden provide healthcare for young people ages 13-25 years old. Using an overall mixed methods approach, the project’s main objective was to develop and evaluate an electronic health system, including a health questionnaire, a case report form, and an evaluation questionnaire to assess young people’s health risks in early stages, increase health, and quality of life. In total, 72 young people, 16-23 years old, eleven healthcare professionals and eight researchers participated in the three project studies. Results from interviews with fifteen young people gave that an electronic health questionnaire should include questions about physical-, mental-, sexual health and social support. It should specifically include questions about self-harm and suicide risk. The young people said that the questionnaire should be appealing, based on young people’s needs and be user-friendly. It was important that young people felt safe when responding to the questions, both physically and electronically. Also, they found that it had the potential to support the face-to face-meeting between young people and healthcare professionals. The electronic health report system was developed by the researchers, performing a structured development of the electronic health questionnaire, construction of a case report form to present the results from the health questions, along with an electronic evaluation questionnaire. An Information Technology company finalized the development by digitalizing the electronic health system. Four young people, three healthcare professionals and seven researchers evaluated the usability using interviews and a usability questionnaire. The electronic health questionnaire was found usable for YHCs but needed some clarifications. Essentially, the system succeeded in capturing the overall health of young people; it should be able to keep the interest of young people and have the potential to contribute to health assessment planning and young people’s self-reflection, sharing vulnerable feelings with healthcare professionals. In advance of effect studies, a feasibility study was performed by collecting electronic questionnaire data from 54 young people and interview data from eight healthcare professionals to assess the feasibility of the use of the electronic evaluation questionnaire, the case report form, and the planned recruitment method. When merging the results, the research group found that the evaluation questionnaire and the health report were feasible for future research. However, the COVID-19 pandemic, commitment challenges and drop-outs affected the recruitment of young people. Also, some healthcare professionals felt insecure about using computers and electronic devices and worried that their workload would increase. This project contributes knowledge about the development and use of electronic health tools for young people. Before implementation, clinical routines need for using the health report system need to be considered.Keywords: adolescent health, developmental studies, electronic health questionnaire, mixed methods research
Procedia PDF Downloads 10645 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance
Authors: Merertu Wakuma Rundassa
Abstract:
Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.Keywords: information technology, business integrity, textile and apparel industries, Ethiopia
Procedia PDF Downloads 36244 Augmented Reality Enhanced Order Picking: The Potential for Gamification
Authors: Stavros T. Ponis, George D. Plakas-Koumadorakis, Sotiris P. Gayialis
Abstract:
Augmented Reality (AR) can be defined as a technology, which takes the capabilities of computer-generated display, sound, text and effects to enhance the user's real-world experience by overlaying virtual objects into the real world. By doing that, AR is capable of providing a vast array of work support tools, which can significantly increase employee productivity, enhance existing job training programs by making them more realistic and in some cases introduce completely new forms of work and task executions. One of the most promising AR industrial applications, as literature shows, is the use of Head Worn, monocular or binocular Displays (HWD) to support logistics and production operations, such as order picking, part assembly and maintenance. This paper presents the initial results of an ongoing research project for the introduction of a dedicated AR-HWD solution to the picking process of a Distribution Center (DC) in Greece operated by a large Telecommunication Service Provider (TSP). In that context, the proposed research aims to determine whether gamification elements should be integrated in the functional requirements of the AR solution, such as providing points for reaching objectives and creating leaderboards and awards (e.g. badges) for general achievements. Up to now, there is a an ambiguity on the impact of gamification in logistics operations since gamification literature mostly focuses on non-industrial organizational contexts such as education and customer/citizen facing applications, such as tourism and health. To the contrary, the gamification efforts described in this study focus in one of the most labor- intensive and workflow dependent logistics processes, i.e. Customer Order Picking (COP). Although introducing AR in COP, undoubtedly, creates significant opportunities for workload reduction and increased process performance the added value of gamification is far from certain. This paper aims to provide insights on the suitability and usefulness of AR-enhanced gamification in the hard and very demanding environment of a logistics center. In doing so, it will utilize a review of the current state-of-the art regarding gamification of production and logistics processes coupled with the results of questionnaire guided interviews with industry experts, i.e. logisticians, warehouse workers (pickers) and AR software developers. The findings of the proposed research aim to contribute towards a better understanding of AR-enhanced gamification, the organizational change it entails and the consequences it potentially has for all implicated entities in the often highly standardized and structured work required in the logistics setting. The interpretation of these findings will support the decision of logisticians regarding the introduction of gamification in their logistics processes by providing them useful insights and guidelines originating from a real life case study of a large DC operating more than 300 retail outlets in Greece.Keywords: augmented reality, technology acceptance, warehouse management, vision picking, new forms of work, gamification
Procedia PDF Downloads 14843 Developing a Maturity Model of Digital Twin Application for Infrastructure Asset Management
Authors: Qingqing Feng, S. Thomas Ng, Frank J. Xu, Jiduo Xing
Abstract:
Faced with unprecedented challenges including aging assets, lack of maintenance budget, overtaxed and inefficient usage, and outcry for better service quality from the society, today’s infrastructure systems has become the main focus of many metropolises to pursue sustainable urban development and improve resilience. Digital twin, being one of the most innovative enabling technologies nowadays, may open up new ways for tackling various infrastructure asset management (IAM) problems. Digital twin application for IAM, as its name indicated, represents an evolving digital model of intended infrastructure that possesses functions including real-time monitoring; what-if events simulation; and scheduling, maintenance, and management optimization based on technologies like IoT, big data and AI. Up to now, there are already vast quantities of global initiatives of digital twin applications like 'Virtual Singapore' and 'Digital Built Britain'. With digital twin technology permeating the IAM field progressively, it is necessary to consider the maturity of the application and how those institutional or industrial digital twin application processes will evolve in future. In order to deal with the gap of lacking such kind of benchmark, a draft maturity model is developed for digital twin application in the IAM field. Firstly, an overview of current smart cities maturity models is given, based on which the draft Maturity Model of Digital Twin Application for Infrastructure Asset Management (MM-DTIAM) is developed for multi-stakeholders to evaluate and derive informed decision. The process of development follows a systematic approach with four major procedures, namely scoping, designing, populating and testing. Through in-depth literature review, interview and focus group meeting, the key domain areas are populated, defined and iteratively tuned. Finally, the case study of several digital twin projects is conducted for self-verification. The findings of the research reveal that: (i) the developed maturity model outlines five maturing levels leading to an optimised digital twin application from the aspects of strategic intent, data, technology, governance, and stakeholders’ engagement; (ii) based on the case study, levels 1 to 3 are already partially implemented in some initiatives while level 4 is on the way; and (iii) more practices are still needed to refine the draft to be mutually exclusive and collectively exhaustive in key domain areas.Keywords: digital twin, infrastructure asset management, maturity model, smart city
Procedia PDF Downloads 15642 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis
Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli
Abstract:
Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.Keywords: cluster analysis, construction management, earned value, schedule
Procedia PDF Downloads 26341 Teacher Training for Bilingual Education of Deaf Students in Brazil
Authors: Mara Aparecida De Castilho Lopes. Maria Eliza Mattosinho Bernardes
Abstract:
The education of deaf individuals in Brazil is grounded in the bilingual approach, which presupposes Brazilian Sign Language (Libras) as the first language for these students. In this perspective, Portuguese should be taught as a second language in its written form, ensuring that deaf students also have access to various academic subjects in sign language. Brazilian legislation (Federal Decree No. 5626 of 2005) mandates the teaching of Brazilian Sign Language in university teacher training programs, but there is no pre-established minimum workload. As a result, there is a significant disparity in the teaching and quality of teacher education across the Brazilian territory. Added to this fact is the general lack of awareness within society regarding the linguistic status of Libras, leading to a shortage of competent teachers for its use and instruction, particularly in higher education. Recently, Federal Law No. 14191 of 2021 established bilingual education for the deaf as a mode of instruction, indicating the need for adjustments in teacher training within higher education teacher preparation programs. Given this context, the objective of the present study was to analyze the teaching proposals for Brazilian Sign Language for students in teacher training programs at public universities in Brazil, presenting alternatives to overcome the current models and academic pathways of teaching and learning. In addition to analyzing Brazilian teaching models, an analysis of a continuing education model for teachers in a French institution was also conducted - considering the historical Franco-Brazilian path of deaf education in Brazil. The analysis of the current teacher training model for deaf education in Brazil revealed that initial exposure to sign language and its linguistic structure is not sufficient to provide future teachers with opportunities to reflect on bilingual teaching methods and practices, as seen in other definitions of bilingualism - bilingual education for proficient listeners in two oral languages. As a result, a training proposal was developed for an experimental interdisciplinary course, integrating the curriculum of an initial and continuing teacher training program alongside the Alfredo Bossi Chair at the University of São Paulo. This proposal is structured into three disciplines, which constitute consecutive moments in teacher education: Fundamental Aspects of Brazilian Sign Language, Bilingual Teaching Methodology, and Teaching Investigation Project - interdisciplinary engagement in the field of deafness. The last offered discipline represents an interdisciplinary supervised internship proposal, considering the multi-professional context that constitutes deaf education within a bilingual approach. In interdisciplinary work within the field of deafness, dialogue between teachers and other professionals who work with deaf students from different perspectives - teachers, speech therapists, and sign language interpreters - is frequently necessary. Through alternative avenues, these actions aim to direct the linguistic development of deaf students within their learning processes. Based on the innovative curriculum proposal described here, the intention is to contribute to the enhancement of teacher education in Brazil, with the goal of ensuring bilingual education for deaf students.Keywords: bilingual education, teacher training, historical-cultural approach, interdisciplinary education, inclusive education
Procedia PDF Downloads 9040 Mindful Self-Compassion Training to Alleviate Work Stress and Fatigue in Community Workers: A Mixed Method Evaluation
Authors: Catherine Begin, Jeanne Berthod, Manon Truchon
Abstract:
In Quebec, there are more than 8,000 community organizations throughout the province, representing more than 72,000 jobs. Working in a community setting involves several particularities (e.g., contact with the suffering of users, feelings of powerlessness, institutional pressure, unstable funding, etc.), which can put workers at risk of fatigue, burnout, and psychological distress. A 2007 study shows that 52% of community workers surveyed have a high psychological distress index. The Ricochet project, founded in 2019, is an initiative aimed at providing various care and services to community workers in the Quebec City region, with a global health approach. Within this program, mindful self-compassion training (MSC) is offered at a low cost. MSC is one of the effective strategies proposed in the literature to help prevent and reduce burnout. Self-compassion is the recognition that suffering, failure, and inadequacies are inherent in the human experience and that everyone, including oneself, deserves compassion. MSC training targets several behavioral, cognitive, and emotional learnings (e.g., motivating oneself with caring, better managing difficult emotions, promoting resilience, etc.). A mixed-method evaluation was conducted with the participants in order to explore the effects of the training on community workers in the Quebec City region. The participants were community workers (management or caregiver). 15 participants completed satisfaction and perceived impact surveys, and 30 participated in structured interviews. Quantitative results showed that participants were generally completely satisfied or satisfied with the training (94%) and perceived that the training allowed them to develop new strategies for dealing with stress (87%). Participants perceived effects on their mood (93%), their contact with others (80%), and their stress level (67%). Some of the barriers raised were scheduling constraints, length of training, and guilt about taking time for oneself. The qualitative results show that individuals experienced long-term benefits, as they were able to apply the tools they received during the training in their daily lives. Some barriers were noted, such as difficulty in getting away from work or problems with the employer, which prevented enrollment. Overall, the results of this evaluation support the use of MSC (mindful self-compassion) training among community workers. Future research could support this evaluation by using a rigorous design and developing innovative ways to overcome the barriers raised.Keywords: mindful self-compassion, community workers, work stres, burnout, wellbeing at work
Procedia PDF Downloads 11839 An Open Trial of Mobile-Assisted Cognitive Behavioral Therapy for Negative Symptoms in Schizophrenia: Pupillometry Predictors of Outcome
Authors: Eric Granholm, Christophe Delay, Jason Holden, Peter Link
Abstract:
Negative symptoms are an important unmet treatment needed for schizophrenia. We conducted an open trial of a novel blended intervention called mobile-assisted cognitive behavior therapy for negative symptoms (mCBTn). mCBTn is a weekly group therapy intervention combining in-person and smartphone-based CBT (CBT2go app) to improve experiential negative symptoms in people with schizophrenia. Both the therapy group and CBT2go app included recovery goal setting, thought challenging, scheduling of pleasurable activities and social interactions, and pleasure savoring interventions to modify defeatist attitudes, a target mechanism associated with negative symptoms, and improve experiential negative symptoms. We tested whether participants with schizophrenia or schizoaffective disorder (N=31) who met prospective criteria for persistent negative symptoms showed improvement in experiential negative symptoms. Retention was excellent (87% at 18 weeks) and severity of defeatist attitudes and motivation and pleasure negative symptoms declined significantly in mCBTn with large effect sizes. We also tested whether pupillary responses, a measure of cognitive effort, predicted improvement in negative symptoms mCBTn. Pupillary responses were recorded at baseline using a Tobii pupillometer during the digit span task with 3-, 6- and 9-digit spans. Mixed models showed that greater dilation during the task at baseline significantly predicted a greater reduction in experiential negative symptoms. Pupillary responses may provide a much-needed prognostic biomarker of which patients are most likely to benefit from CBT. Greater pupil dilation during a cognitive task predicted greater improvement in experiential negative symptoms. Pupil dilation has been linked to motivation and engagement of executive control, so these factors may contribute to benefits in interventions that train cognitive skills to manage negative thoughts and emotions. The findings suggest mCBTn is a feasible and effective treatment for experiential negative symptoms and justify a larger randomized controlled clinical trial. The findings also provide support for the defeatist attitude model of experiential negative symptoms and suggest that mobile-assisted interventions like mCBTn can strengthen and shorten intensive psychosocial interventions for schizophrenia.Keywords: cognitive-behavioral therapy, mobile interventions, negative symptoms, pupillometry schizophrenia
Procedia PDF Downloads 18038 Using Signature Assignments and Rubrics in Assessing Institutional Learning Outcomes and Student Learning
Authors: Leigh Ann Wilson, Melanie Borrego
Abstract:
The purpose of institutional learning outcomes (ILOs) is to assess what students across the university know and what they do not. The issue is gathering this information in a systematic and usable way. This presentation will explain how one institution has engineered this process for both student success and maximum faculty curriculum and course design input. At Brandman University, there are three levels of learning outcomes: course, program, and institutional. Institutional Learning Outcomes (ILOs) are mapped to specific courses. Faculty course developers write the signature assignments (SAs) in alignment with the Institutional Learning Outcomes for each course. These SAs use a specific rubric that is applied consistently by every section and every instructor. Each year, the 12-member General Education Team (GET), as a part of their work, conducts the calibration and assessment of the university-wide SAs and the related rubrics for one or two of the five ILOs. GET members, who are senior faculty and administrators who represent each of the university's schools, lead the calibration meetings. Specifically, calibration is a process designed to ensure the accuracy and reliability of evaluating signature assignments by working with peer faculty to interpret rubrics and compare scoring. These calibration meetings include the full time and adjunct faculty members who teach the course to ensure consensus on the application of the rubric. Each calibration session is chaired by a GET representative as well as the course custodian/contact where the ILO signature assignment resides. The overall calibration process GET follows includes multiple steps, such as: contacting and inviting relevant faculty members to participate; organizing and hosting calibration sessions; and reviewing and discussing at least 10 samples of student work from class sections during the previous academic year, for each applicable signature assignment. Conversely, the commitment for calibration teams consist of attending two virtual meetings lasting up to three hours in duration. The first meeting focuses on interpreting the rubric, and the second meeting involves comparing scores for sample work and sharing feedback about the rubric and assignment. Next, participants are expected to follow all directions provided and participate actively, and respond to scheduling requests and other emails within 72 hours. The virtual meetings are recorded for future institutional use. Adjunct faculty are paid a small stipend after participating in both calibration meetings. Full time faculty can use this work on their annual faculty report for "internal service" credit.Keywords: assessment, assurance of learning, course design, institutional learning outcomes, rubrics, signature assignments
Procedia PDF Downloads 27937 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads
Authors: Gaurav Kumar Sinha
Abstract:
In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies
Procedia PDF Downloads 6636 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 35035 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity
Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen
Abstract:
This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development
Procedia PDF Downloads 7134 Practice Based Approach to the Development of Family Medicine Residents’ Educational Environment
Authors: Lazzat M. Zhamaliyeva, Nurgul A. Abenova, Gauhar S. Dilmagambetova, Ziyash Zh. Tanbetova, Moldir B. Ahmetzhanova, Tatyana P. Ostretcova, Aliya A. Yegemberdiyeva
Abstract:
Introduction: There are many reasons for the weak training of family doctors in Kazakhstan: the unified national educational program is not focused on competencies, the role of a general practitioner (GP) is not clear, poor funding for the health care and education system, outdated teaching and assessment methods, inefficient management. We highlight two issues in particular. Firstly, academic teachers of family medicine (FM) in Kazakhstan do not practice as family doctors; most of them are narrow specialists (pediatricians, therapists, surgeons, etc.); they usually hold one-time consultations; clinical mentors from practical healthcare (non-academic teachers) do not have the teaching competences, and the vast majority of them are also narrow specialists. Secondly, clinical sites (polyclinics) are unprepared for general practice and do not follow the principles of family medicine; residents do not like to be in primary health care (PHC) settings due to the chaos that is happening there, as well as due to the lack of the necessary equipment for mastering and consolidating practical skills. Aim: We present the concept of the family physicians’ training office (FPTO), which is being created as a friendly learning environment for young general practitioners and for the involvement of academic teachers of family medicine in the practical work and innovative development of PHC. Methodology: In developing the conceptual framework and identifying practical activities, we drew on literature and expert input, and interviews. Results: The goal of the FPTO is to create a favorable educational and clinical environment for the development of the FM residents’ competencies, in which the residents with academic teachers and clinical mentors could understand and accept the principles of family medicine, improve clinical knowledge and skills, and gain experience in improving the quality of their practice in scientific basis. Three main areas of office activity are providing primary care to the patients, improving educational services for FM residents and other medical workers, and promoting research in PHC and innovations. The office arranges for residents to see outpatients at least 50% of the time, and teachers of FM departments at least 1/4 of their working time conduct general medical appointments next to residents. Taking into account the educational and scientific workload, the number of attached population for one GP does not exceed 500 persons. The equipment of the office allows FPTO workers to perform invasive and other manipulations without being sent to other clinics. In the office, training for residents is focused on their needs and aimed at achieving the required level of competence. International methodologies and assessment tools are adapted to local conditions and evaluated for their effectiveness and acceptability. Residents and their faculty actively conduct research in the field of family medicine. Conclusions: We propose to change the learning environment in order to create teams of like-minded people, to unite residents and teachers even more for the development of family medicine. The offices will also invest resources in developing and maintaining young doctors' interest in family medicine.Keywords: educational environment, family medicine residents, family physicians’ training office, primary care research
Procedia PDF Downloads 13333 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 48232 Psychological Distress during the COVID-19 Pandemic in Nursing Students: A Mixed-Methods Study
Authors: Mayantoinette F. Watson
Abstract:
During such an unprecedented time of the largest public health crisis, the COVID-19 pandemic, nursing students are of the utmost concern regarding their psychological and physical well-being. Questions are emerging and circulating about what will happen to the nursing students and the long-term effects of the pandemic, especially now that hospitals are being overwhelmed with a significant need for nursing staff. Expectations, demands, change, and the fear of the unknown during this unprecedented time can only contribute to the many stressors that accompany nursing students through laborious clinical and didactic courses in nursing programs. The risk of psychological distress is at a maximum, and its effects can negatively impact not only nursing students but also nursing education and academia. The high exposures to interpersonal, economic, and academic demands contribute to the major health concerns, which include a potential risk for psychological distress. Achievement of educational success among nursing students is directly affected by the high exposure to anxiety and depression from experiences within the program. Working relationships and achieving academic success is imperative to positive student outcomes within the nursing program. The purpose of this study is to identify and establish influences and associations within multilevel factors, including the effects of the COVID-19 pandemic on psychological distress in nursing students. Neuman’s Systems Model Theory was used to determine nursing students’ responses to internal and external stressors. The research in this study utilized a mixed-methods, convergent study design. The study population included undergraduate nursing students from Southeastern U.S. The research surveyed a convenience sample of undergraduate nursing students. The quantitative survey was completed by 202 participants, and 11 participants participated in the qualitative follow-up interview surveys. Participants completed the Kessler Psychological Distress Scale (K6), the Perceived Stress Scale (PSS4), and the Dundee Readiness Educational Environment Scale (DREEM12) to measure psychological distress, perceived stress, and perceived educational environment. Participants also answered open-ended questions regarding their experience during the COVID-19 pandemic. Statistical tests, including bivariate analyses, multiple linear regression analyses, and binary logistics regression analyses were performed in effort to identify and highlight the effects of independent variables on the dependent variable, psychological distress. Coding and qualitative content analysis were performed to identify overarching themes within participants’ interviews. Quantitative data were sufficient in identifying correlations between psychological distress and multilevel factors of coping, marital status, COVID-19 stress, perceived stress, educational environment, and social support in nursing students. Qualitative data were sufficient in identifying common themes of students’ perceptions during COVID-19 and included online learning, workload, finances, experience, breaks, time, unknown, support, encouragement, unchanged, communication, and transmission. The findings are significant, specifically regarding contributing factors to nursing students’ psychological distress, which will help to improve learning in the academic environment.Keywords: nursing education, nursing students, pandemic, psychological distress
Procedia PDF Downloads 8631 Zinc Oxide Varistor Performance: A 3D Network Model
Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic
Abstract:
ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide
Procedia PDF Downloads 28130 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 7229 An A-Star Approach for the Quickest Path Problem with Time Windows
Authors: Christofas Stergianos, Jason Atkin, Herve Morvan
Abstract:
As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling
Procedia PDF Downloads 22928 A Mixed Integer Linear Programming Model for Container Collection
Authors: J. Van Engeland, C. Lavigne, S. De Jaeger
Abstract:
In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.Keywords: container collection, crew scheduling, mixed integer linear programming, waste management
Procedia PDF Downloads 13327 Stroke Prevention in Patients with Atrial Fibrillation and Co-Morbid Physical and Mental Health Problems
Authors: Dina Farran, Mark Ashworth, Fiona Gaughran
Abstract:
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is associated with an increased risk of stroke, contributing to heart failure and death. In this project, we aim to improve patient safety by screening for stroke risk among people with AF and co-morbid mental illness. To do so, we started by conducting a systematic review and meta-analysis on prevalence, management, and outcomes of AF in people with Serious Mental Illness (SMI) versus the general population. We then evaluated oral anticoagulation (OAC) prescription trends in people with AF and co-morbid SMI in King’s College Hospital. We also evaluated the association between mental illness severity and OAC prescription in eligible patients in South London and Maudsley (SLaM) NHS Foundation Trust. Next, we implemented an electronic clinical decision support system (eCDSS) consisting of a visual prompt on patient electronic Personal Health Records to screen for AF-related stroke risk in three Mental Health of Older Adults wards at SLaM. Finally, we assessed the feasibility and acceptability of the eCDSS by qualitatively investigating clinicians’ perspectives of the potential usefulness of the eCDSS (pre-intervention) and their experiences and their views regarding its impact on clinicians and patients (post-intervention). The systematic review showed that people with SMI had low reported rates of AF. AF patients with SMI were less likely to receive OAC than the general population. When receiving warfarin, people with SMI, particularly bipolar disorder, experienced poor anticoagulation control compared to the general population. Meta-analysis showed that SMI was not significantly associated with an increased risk of stroke or major bleeding when adjusting for underlying risk factors. The main findings of the first observational study were that among AF patients having a high stroke risk, those with co-morbid SMI were less likely than non-SMI to be prescribed any OAC, particularly warfarin. After 2019, there was no significant difference between the two groups. In the second observational study, patients with AF and co-morbid SMI were less likely to be prescribed any OAC compared to those with dementia, substance use disorders, or common mental disorders, adjusting for age, sex, stroke, and bleeding risk scores. Among AF patients with co-morbid SMI, warfarin was less likely to be prescribed to those having alcohol or substance dependency, serious self-injury, hallucinations or delusions, and activities of daily living impairment. In the intervention, clinicians were asked to confirm the presence of AF, clinically assess stroke and bleeding risks, record risk scores in clinical notes, and refer patients at high risk of stroke to OAC clinics. Clinicians reported many potential benefits for the eCDSS, including improving clinical effectiveness, better identification of patients at risk, safer and more comprehensive care, consistency in decision making and saving time. Identified potential risks included rigidity in decision-making, overreliance, reduced critical thinking, false positive recommendations, annoyance, and increased workload. This study presents a unique opportunity to quantify AF patients with mental illness who are at high risk of severe outcomes using electronic health records. This has the potential to improve health outcomes and, therefore patients' quality of life.Keywords: atrial fibrillation, stroke, mental health conditions, electronic clinical decision support systems
Procedia PDF Downloads 4926 Access to Inclusive and Culturally Sensitive Mental Healthcare in Pharmacy Students and Residents
Authors: Esha Thakkar, Ina Liu, Kalynn Hosea, Shana Katz, Katie Marks, Sarah Hall, Cat Liu, Suzanne Harris
Abstract:
Purpose: Inequities in mental healthcare accessibility are cited as an international public health concern by the World Health Organization (WHO) and National Alliance on Mental Illness (NAMI). These disparities are further exacerbated in racial and ethnic minority groups and are especially concerning in health professional training settings such as Doctor of Pharmacy (PharmD) programs and postgraduate residency training where mental illness rates are high. The purpose of the study was to determine baseline access to culturally sensitive mental healthcare and how to improve such access and communication for racially and ethnically minoritized pharmacy students and residents at one school of pharmacy and a partnering academic medical center in the United States. Methods: This IRB-exempt study included 60-minute focus groups conducted in person or online from November 2021 to February 2022. Eligible participants included PharmD students in their first (P1), second (P2), third (P3), or fourth year (P4) or pharmacy residents completing a postgraduate year 1 (PGY1) or PGY2 who identify as Black, Indigenous, or Person of Color (BIPOC). There were four core theme questions asked during the focus groups to lead the discussion, specifically on the core themes of personal barriers, identities, areas that are working well, and areas for improvement. Participant responses were transcribed and analyzed using an open coding system with two individual reviews, followed by collaborative and intentional discussion and, as needed, an external audit of the coding by a third research team member to reach a consensus on themes. Results: This study enrolled 26 participants, with eight P1, five P2, seven P3, two P4, and four resident participants. Within the four core themes of barriers, identities, areas working well, and areas for improvement, emerging subthemes included: lack of time, access to resources, and stigma under barriers; lack of representation, cultural and family stigma, and gender identities for identity barriers; supportive faculty, sense of community and culture supporting paid time off for areas going well; and wellness days, reduced workload and diversity of the workforce in areas of improvement. Subthemes sometimes varied within a core theme depending on the participant year. Conclusions: There is a gap in the literature in addressing barriers and disparities in mental health access for pharmacy trainees who identify as BIPOC. We identified key findings in regards to barriers, identities, areas going well and areas for improvement that can inform the School and the Residency Program in two priority initiatives of well-being and diversity equity and inclusion in creating actionable recommendations for trainees, program directors, and employers of our institutions, and also has the potential to provide insight for other organizations about the structures influencing access to culturally sensitive care in BIPOC trainees. These findings can inform organizations on how to continue building on communication with those who identify as BIPOC and improve access to care.Keywords: mental health, disparities, minorities, wellbeing, identity, communication, barriers
Procedia PDF Downloads 9225 Lessons Learned from a Chronic Care Behavior Change Program: Outcome to Make Physical Activity a Habit
Authors: Doaa Alhaboby
Abstract:
Behavior change is a complex process that often requires ongoing support and guidance. Telecoaching programs have emerged as effective tools in facilitating behavior change by providing personalized support remotely. This abstract explores the lessons learned from a randomized controlled trial (RCT) evaluation of a telecoaching program focused on behavior change for Diabetics and discusses strategies for implementing these lessons to overcome the challenge of making physical activity a habit. The telecoaching program involved participants engaging in regular coaching sessions delivered via phone calls. These sessions aimed to address various aspects of behavior change, including goal setting, self-monitoring, problem-solving, and social support. Over the course of the program, participants received personalized guidance tailored to their unique needs and preferences. One of the key lessons learned from the RCT was the importance of engagement, readiness to change and the use of technology. Participants who set specific, measurable, attainable, relevant, and time-bound (SMART) goals were more likely to make sustained progress toward behavior change. Additionally, regular self-monitoring of behavior and progress was found to be instrumental in promoting accountability and motivation. Moving forward, implementing the lessons learned from the RCT can help individuals overcome the hardest part of behavior change: making physical activity a habit. One strategy is to prioritize consistency and establish a regular routine for physical activity. This may involve scheduling workouts at the same time each day or week and treating them as non-negotiable appointments. Additionally, integrating physical activity into daily life routines and taking into consideration the main challenges that can stop the process of integrating physical activity routines into the daily schedule can help make it more habitual. Furthermore, leveraging technology and digital tools can enhance adherence to physical activity goals. Mobile apps, wearable activity trackers, and online fitness communities can provide ongoing support, motivation, and accountability. These tools can also facilitate self-monitoring of behavior and progress, allowing individuals to track their activity levels and adjust their goals as needed. In conclusion, telecoaching programs offer valuable insights into behavior change and provide strategies for overcoming challenges, such as making physical activity a habit. By applying the lessons learned from these programs and incorporating them into daily life, individuals can cultivate sustainable habits that support their long-term health and well-being.Keywords: lifestyle, behavior change, physical activity, chronic conditions
Procedia PDF Downloads 5924 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka
Authors: Sherly Shelton, Zhaohui Lin
Abstract:
In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature
Procedia PDF Downloads 130