Search results for: sport classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2594

Search results for: sport classification

1994 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 185
1993 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 246
1992 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers

Procedia PDF Downloads 296
1991 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 135
1990 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 510
1989 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 342
1988 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 117
1987 The Relationship between Organizational Political Behavior and Moral Values with Work Engagement in Sport Employees of National Iranian Gas Company

Authors: Seyed Salahedin Naghshbandi, Mahnaz Ahmadikhatir, Siavash Hamidzadeh

Abstract:

The purpose of this study was to investigate the relationship between organizational political behavior and ethical values with the job enthusiasm of the sport personnel of the National Iranian Gas Company. The population of this research included all personnel of the National Iranian Gas Company's sports personnel (150 people). For collecting information, library resources and three questionnaires, organizational political behavior by Kaspar and Carlsen (1997), Lewall's moral values questionnaire (1986) and job enthusiasm questionnaire Schaufeli & Bekker (2003) have been used. Validity of the questionnaires was confirmed by university professors. Using Cronbach alpha correlation coefficient, the reliability of the organizational political behavior questionnaire was 0.92, the moral values questionnaire was 0.86 and the Schaufeli & Baker job enthusiasm questionnaire was 0.91-0.96. The results of this research show a significant, direct and positive relationship between the components of job aspiration with political behavior and ethical values. Therefore, managers of organizations should, as far as possible, remove political behaviors from the organization and be able to institutionalize ethical values in their organization so that they can increase employee eagerness.

Keywords: political behavior, ethical values, job enthusiasm, staff, national Iranian gas company

Procedia PDF Downloads 115
1986 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 348
1985 Athletes with High Mental Toughness Levels Experiencing Less Anxiety

Authors: H. Analuie, M. Faruque, S. Saha, H. Hashim, M. Muzaimi

Abstract:

Though mental toughness has long been explored in sport psychology, much of our understanding on the topic remains largely unexplored. The concept is used widely, but empirical evidence is required to fully understand the construct and its related variables. This research investigated the correlation between mental toughness and trait anxiety to determine whether mentally tough athletes generally experience more or less anxiety. A sample of 57 men (M age = 25.4 years, s=4.66) and 45 women (M age = 23.5 years, s=5.73) participated in a variety of sports were recruited, where mental toughness was measured using MTQ48. Levels of trait anxiety were assessed using the State-Trait Anxiety Inventory (STAI). Series of Pearson correlations between trait anxiety, overall mental toughness, and the six subscales of mental toughness showed significant (p> .05) relationships. As predicted, greater mental toughness was associated with less reported trait anxiety. Independent t-tests found significant differences (p> .05) in overall mental toughness, the mental toughness subscales or trait anxiety between men and women. More research is required to understand how mentally tough athletes experience less anxiety in comparison to those who are not as mentally tough. Our findings suggest that relationships observed in this study emphasize the need for the inclusion of trait anxiety in mental toughness interventions.

Keywords: mental toughness, trait anxiety, MTQ48, sport psychology

Procedia PDF Downloads 459
1984 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 134
1983 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 109
1982 Pelvic Floor Training in Elite Athletes: Fact or Fiction

Authors: Maria Barbano Acevedo-Gomez, Elena Sonsoles Rodriguez-Lopez, Sofia Olivia Calvo-Moreno, Angel Basas-Garcia, Cristophe Ramirez

Abstract:

Introduction: Urinary incontinence (UI) is defined as the involuntary leakage of urine. In persons who practice sport, its prevalence is 36.1% (95% CI 26.5%-46.8%) and varies as it seems to depend on the intensity of exercise, movements, and impact on the ground. Such high impact sports are likely to generate higher intra-abdominal pressures and leading to pelvic floor muscle weakness. Even though the emphasis of this research is on female athletes, all women should perform pelvic floor muscle exercises as a part of their general physical exercise. Pelvic floor exercises are generally considered the first treatment against urinary incontinence. Objective: The main objective of the present study was to determine the knowledge of the pelvic floor and of the UI in elite athletes and know if they incorporate pelvic floor strengthening in their training. Methods: This was an observational study conducted on 754 elite athletes. After collecting questions about the pelvic floor, UI, and sport-related data, participants completed the questionnaire International Consultation on Incontinence Questionnaire-UI Short-Form (ICIQ-SF). Results: 57.3% of the athletes reflect not having knowledge of their pelvic floor, 48.3% do not know what strengthening exercises are, and around 90% have never practiced them. 78.1% (n=589) of all elite athletes do not include pelvic floor exercises in their training. Of the elite athletes surveyed, 33% had UI according to ICIQ-SF (mean age 23.75 ± 7.74 years). In response to the question 'Do you think you have or have had UI?', Only 9% of the 754 elite athletes admitted they presently had UI, and 13.3% indicated they had had UI at some time. However, 22.7% (n=171) reported they had experienced urine leakage while training. Of the athletes who indicated they did not have UI in the ICIQ-SF, 25.7% stated they did experience urine leakage during training (χ² [1] = 265.56; p < 0.001). Further, 12.3% of the athletes who considered they did not have UI and 60% of those who admitted they had had UI on some occasion stated they had suffered some urine leakage in the past 3 months (χ² [1] = 287.59; p < 0.001). Conclusions: There is a lack of knowledge about UI in sport. Through the use of validated questionnaires, we observed a UI prevalence of 33%, and 22.7% reported they experienced urine leakage while training. These figures contrast with only 9% of athletes who reported they had or had in the past had UI. This discrepancy could reflect the great lack of knowledge about UI in sports and that sometimes an athlete may consider that urine leakage is normal and a consequence of the demands of training. These data support the idea that coaches, physiotherapists, and other professionals involved in maximizing the performance of athletes should include pelvic floor muscle exercises in their training programs. Measures such as this could help to prevent UI during training and could be a starting point for future studies designed to develop adequate prevention and treatment strategies for this embarrassing problem affecting young athletes, both male and female.

Keywords: athletes, pelvic floor, performance, prevalence, sport, training, urinary incontinence

Procedia PDF Downloads 124
1981 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 194
1980 Case Study on Gender Equality in the United Arab Emirates through the Lens of Sport

Authors: Nioofar Margarite Rouhani

Abstract:

Using a case study methodology, this study explores the lived experiences of elite women footballers (soccer) team in the United Arab Emirates (UAE) and the challenges and enablers women in this country encountered in their journey to competing at an international level. Through a series of face-to-face interviews with members of the first all-Emirati (people with UAE passport) women’s football team, members of the team’s coaching staff and key policymakers, the study sought to explore the social and cultural conditions that enabled the emergence of this team. A key aim of the study was to analyze the cultural shifts that have seemingly facilitated changes to gender relations in the UAE and to highlight possibilities for future gender equality work. The study explores the significance of sport in UAE society and its role in disrupting traditional gender boundaries. To do this, the study identifies and analyses contemporary social (religion, class, and culture) conditions that facilitate, and/or restrict, women’s sports participation in the public sphere of sport. Drawing on a feminist poststructural framework the study sought to analyse the discursive enactment of (disruptive) gender identity positions, using lenses such as ‘discourse’ and ‘power’. With a particular focus on elite women’s sport, the study sought to build knowledge around the advance of female participation in what has long been considered as a masculine domain. Here, the study sought to explore the lived experience of social change through a series of face-to-face interviews with members of the first all-Emirati- women’s football team and key support personnel. To maintain representational integrity, the principles of narrative methodology were employed for their ability to privilege the voices of participants while integrating contextual forces that comprised the stories they told about their experiences and the key people who participated in them. This approach supported a key aim of the study, being to analyse the cultural shifts that have supported changes in gender performance in the UAE and to highlight possibilities for future gender disruption. While the results of the study convey a growing sense of opportunity for aspiring sportswomen in the UAE, they also reveal that the participant pathways were full of contestation and restriction. What we learn from the stories of the first Emirate women’s football team is that where the will is strong enough, there can be a way. While it is reasonable to assume that such pathways will become easier in the future, as the participation of women in such sporting arenas becomes less exceptional, there are factors that are likely to enable and disable such journeys. Prominent here is the presence of a ‘powerful’ guardian and mentor who can offer sustained support, and influence. In a society where males continue to have disproportionate access to social and domestic power, such support can be extremely influential. Guardians and mentors can play a crucial role in garnering the support of dominant male figures, or helping to find ways to work around it.

Keywords: gender equality, women, sport, Middle East

Procedia PDF Downloads 108
1979 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 382
1978 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 160
1977 Examining the Effects of Ticket Bundling Strategies and Team Identification on Purchase of Hedonic and Utilitarian Options

Authors: Young Ik Suh, Tywan G. Martin

Abstract:

Bundling strategy is a common marketing practice today. In the past decades, both academicians and practitioners have increasingly emphasized the strategic importance of bundling in today’s markets. The reason for increased interest in bundling strategy is that they normally believe that it can significantly increase profits on organization’s sales over time and it is convenient for the customer. However, little efforts has been made on ticket bundling and purchase considerations in hedonic and utilitarian options in sport consumer behavior context. Consumers often face choices between utilitarian and hedonic alternatives in decision making. When consumers purchase certain products, they are only interested in the functional dimensions, which are called utilitarian dimensions. On the other hand, others focus more on hedonic features such as fun, excitement, and pleasure. Thus, the current research examines how utilitarian and hedonic consumption can vary in typical ticket purchasing process. The purpose of this research is to understand the following two research themes: (1) the differential effect of discount framing on ticket bundling: utilitarian and hedonic options and (2) moderating effect of team identification on ticket bundling. In order to test the research hypotheses, an experimental study using a two-way ANOVA, 3 (team identification: low, medium, and high) X 2 (discount frame: ticket bundle sales with utilitarian product, and hedonic product), with mixed factorial design will be conducted to determine whether there is a statistical significance between purchasing intentions of two discount frames of ticket bundle sales within different team identification levels. To compare mean differences among the two different settings, we will create two conditions of ticket bundles: (1) offering a discount on a ticket ($5 off) if they would purchase it along with utilitarian product (e.g., iPhone8 case, t-shirt, cap), and (2) offering a discount on a ticket ($5 off) if they would purchase it along with hedonic product (e.g., pizza, drink, fans featured on big screen). The findings of the current ticket bundling study are expected to have many theoretical and practical contributions and implications by extending the research and literature pertaining to the relationship between team identification and sport consumer behavior. Specifically, this study can provide a reliable and valid framework to understanding the role of team identification as a moderator on behavioral intentions such as purchase intentions. From an academic perspective, the study will be the first known attempt to understand consumer reactions toward different discount frames related to ticket bundling. Even though the game ticket itself is the major commodity of sport event attendance and significantly related to teams’ revenue streams, most recent ticket pricing research has been done in terms of economic or cost-oriented pricing and not from a consumer psychological perspective. For sport practitioners, this study will also provide significant implications. The result will imply that sport marketers may need to develop two different ticketing promotions for loyal fan and non-loyal fans. Since loyal fans concern ticket price than tie-in products when they see ticket bundle sales, advertising campaign should be more focused on discounting ticket price.

Keywords: ticket bundling, hedonic, utilitarian, team identification

Procedia PDF Downloads 166
1976 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 85
1975 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 442
1974 Understanding Level 5 Sport Student’s Perspectives of the Barriers to Progression and Attainment

Authors: Emma Whewell, Lee Waters, Mark Wall

Abstract:

This paper is a mixed methods investigation into the perceived barriers to attainment and progression. Initially entry level data was analysed to identify some of the key characteristics of the student cohort- for example entry route, age and ethnic background. Secondly, a phenomenological case study of the lived experiences of 15 level 5 sport and exercise students was conducted. It aimed to understand the complexities of success in higher education, far beyond entry qualifications, indices of deprivation and POLAR characteristics, to offer a first-hand account of student perceptions and interpretations of the barriers they face in progression, retention and completion on their programme. Using focus groups and interviews with students from a range of indices we offer a set of rich case studies exploring the interpretations of our students’ lived experiences and challenges. Findings demonstrate a complex set of circumstances that centre on managing workload, use of support services and aspirations of students that conflict with university priorities. Conclusions centre on the role of academic and pastoral support, assumptions about priorities of students and practical interventions to support achievement.

Keywords: access and participation, higher education, progression and retention, barriers

Procedia PDF Downloads 107
1973 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 440
1972 Understanding Barriers to Sports Participation as a Means of Achieving Sustainable Development in Michael Otedola College of Primary Education

Authors: Osifeko Olalekan Remigious, Osifeko Christiana Osikorede, Folarin Bolanle Eunice, Olugbenga Adebola Shodiya

Abstract:

During these difficult economic times, nations are looking for ways to improve their finances, preserve the environment as well as the socio-political climate and educational institutions, which are needed to increase their economy and preserve their sustainable development. Sport is one of the ways through which sustainable development can be achieved. The purpose of this study was to examine and understanding barriers to participation in sport. A total of 1,025 students were purposively selected from five schools (School of Arts and Social Sciences, School of Languages, School of Education, School of Sciences and School of Vocational and Technical Education) in Michael Otedola College of Primary Education (MOCPED). A questionnaire, with a tested reliability coefficient of 0.71, was used for data collection. The collected data were subjected to the descriptive survey research design. The findings showed that sports facilities, funding and lecture schedules were significant barriers to sports participation. It was recommended that sports facilities be provided by the Lagos State government.

Keywords: sports, sustainable development, Participation, State government, barriers

Procedia PDF Downloads 257
1971 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 133
1970 The Rupture of Tendon Achilles During the Recreative and Sports Activities

Authors: Jasmin S. Nurkovic, Ljubisa Dj. Jovasevic, Zana C. Dolicanin, Zoran S. Bajin

Abstract:

Ruptured muscles and tendons very often must be repatriated by open operation in young persons. In young, muscles are ruptured more often than tendons, at the sane time in older persons are more exposed to rupture than muscles. Ruptured of the calcaneus are the most present of all ruptures. Sometime the rupture is complete, but very often the incomplete rupture can be noticed. During six years, from 2006 to 2012, we treated nineteen male patients and three female patients with the rupture of tendon Achilles. The youngest patient was aged thirty two, and the oldest was also managed sixty four. The youngest female patient was forty one and the oldest was forty six. One of our patients who was under corticosteroid treatment did not take any part in sport activities but she was, as she told us, going for a long walk, the same was with other two patients one man and one woman. We had nineteen male patients age 32 to 64 and three female patients age 41, 44 and 46. Conservative treatment by cast was applied in five patients and very good results were in three of them. In two patients surgical treatment failed in patient’s age 53 and 64. Only one of all patients treated by surgery had healing problems because of necrotic changes of the skin where incision was made. One of our female patients age 45 was under steroid treatment for almost 20 years because of asthmatic problems. We suggested her wearing boots with 8cm long heels by day and by night eight weeks. The final results were satisfactory and all the time she was able to work and to walk. It was the only case we had with bilateral tendon rupture. After eight weeks the cast is removed and psychiatric treatment started, patient is using crutches with partial weight bearing over a period of two weeks. Quite the same treatment conservative treatment, only the cast is not removed after two but after four weeks. Everyday activities after the surgical treatment started ten weeks and sport activities can start after fourteen to sixteen weeks. An increased activity of our patient without previous preparing for forces activity can result, as we already see, with tendon rupture. Treatment is very long and very often surgical. We find that surgical treatment resulted as safer and better solution for patients. We also had a patient with spontaneous rupture of tendon during longer walking but this patient was under prolonged corticosteroid treatment.

Keywords: tendon, Achilles, rupture, sport

Procedia PDF Downloads 245
1969 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 96
1968 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 293
1967 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 389
1966 A Sports-Specific Physiotherapy Center Treats Sports Injuries

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.

Keywords: sports injuries, athletes, joint injuries, injured players

Procedia PDF Downloads 72
1965 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness

Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta

Abstract:

Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.

Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health

Procedia PDF Downloads 531