Search results for: spectrum estimation
2687 Vehicle Speed Estimation Using Image Processing
Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha
Abstract:
In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision
Procedia PDF Downloads 842686 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX
Procedia PDF Downloads 3932685 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.Keywords: human motion capture, computer vision, vision-based, tracking
Procedia PDF Downloads 3192684 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 512683 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.Keywords: forest wildfires, surveillance, fuel volume estimation, firefighting, ignition detectors, 3D modelling, UAV
Procedia PDF Downloads 1422682 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy
Procedia PDF Downloads 5052681 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method
Procedia PDF Downloads 1492680 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery
Procedia PDF Downloads 1992679 Tea Club (Singapore)-Learning to Navigate the Social World without Fear: Adapted from PEERS® for Young Adults
Authors: Janice Cheong, Tan Seying
Abstract:
The growing years in adolescence are often a tumultuous time for both the individual and family; this is especially so for individuals with Autism Spectrum Disorder (ASD) and Social Communication Disorder (SCD). Tea Club, which is adapted from the PEERS® for Young Adults, seeks to address some of the social challenges faced by Singaporean adolescents with ASD/SCD while navigating social situations. Tea club (hybrid) consists of face-to-face sessions and virtual sessions. These sessions work with both the adolescent and their parents to tackle the individual's difficulties with social skills, empathy, and loneliness. Prior to the group intervention, both participants and their parents scored on the Test of Adolescent Social Skills Knowledge (TASSK) and Autism Spectrum Quotient (AQ), respectively. The session was spread across four months. At the end of the group based intervention, participants’ and parents’ scores were collected again and compared. Inputs on the programme and participant’s confidence in socialization were also gathered from both participants and their parents and looked at thematically. The findings highlight some of the challenges faced by teens with ASD in Singapore and the benefits of the intervention. Parental sentiments are also examined and discussed.Keywords: adolescence autism, group intervention, social communication disorder, social skills
Procedia PDF Downloads 1432678 Teaching English as a Second Language to Primary Students with Autism Spectrum Disorder
Authors: Puteri Zarina M. K., Haddi J. K., Zolkepli N., Shu M. H. B., Hosshan H., Saad M. A.
Abstract:
This paper provides an overview of the current state of ESL instruction for children with autism in Malaysia. Equal rights, independence, and active participation are guaranteed by the 2006 Convention on the Rights of Persons with Disabilities. Every child is entitled to receive education in an inclusive atmosphere that embraces diversity and ensures equal opportunity for all. The primary objective of the research was to investigate if English as a Second Language (ESL) teachers employ distinct instructional methods and strategies while teaching children diagnosed with autism. Moreover, the objective was to assess the similarities in the challenges faced by teachers when teaching ESL to children with autism in Malaysia. The study aimed to increase understanding of the challenges faced by ESL teachers in teaching autistic students. The study was structured as a qualitative research endeavour. A total of twelve (12) ESL teachers from selected primary schools in Malaysia were involved in this study. The research findings accurately depict the actual state of teaching ESL to autistic children. They confirm the imperative need for additional support in order to facilitate the successful integration of these children into the educational system.Keywords: autism spectrum disorder, ESL, inclusion, Malaysia, special educational needs
Procedia PDF Downloads 642677 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping
Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM
Procedia PDF Downloads 942676 Reservoir Properties Effect on Estimating Initial Gas in Place Using Flowing Material Balance Method
Authors: Yousef S. Kh. S. Hashem
Abstract:
Accurate estimation of initial gas in place (IGIP) plays an important factor in the decision to develop a gas field. One of the methods that are available in the industry to estimate the IGIP is material balance. This method required that the well has to be shut-in while pressure is measured as it builds to average reservoir pressure. Since gas demand is high and shut-in well surveys are very expensive, flowing gas material balance (FGMB) is sometimes used instead of material balance. This work investigated the effect of reservoir properties (pressure, permeability, and reservoir size) on the estimation of IGIP when using FGMB. A gas reservoir simulator that accounts for friction loss, wellbore storage, and the non-Darcy effect was used to simulate 165 different possible causes (3 pressures, 5 reservoir sizes, and 11 permeabilities). Both tubing pressure and bottom-hole pressure were analyzed using FGMB. The results showed that the FGMB method is very sensitive for tied reservoirs (k < 10). Also, it showed which method is best to be used for different reservoir properties. This study can be used as a guideline for the application of the FGMB method.Keywords: flowing material balance, gas reservoir, reserves, gas simulator
Procedia PDF Downloads 1552675 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors
Authors: George Pavlidis, Ana Vivas
Abstract:
The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece
Procedia PDF Downloads 5232674 Nonparametric Copula Approximations
Authors: Serge Provost, Yishan Zang
Abstract:
Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation
Procedia PDF Downloads 732673 Allocating Channels and Flow Estimation at Flood Prone Area in Desert, Example from AlKharj City, Saudi Arabia
Authors: Farhan Aljuaidi
Abstract:
The rapid expansion of Alkarj city, Saudi Arabia, towards the outlet of Wadi AlAin is critical for the planners and decision makers. Nowadays, two major projects such as Salman bin Abdulaziz University compound and new industrial area are developed in this flood prone area where no channels are clear and identified. The main contribution of this study is to divert the flow away from these vital projects by reconstructing new channels. To do so, Lidar data were used to generate contour lines for the actual elevation of the highways and local roads. These data were analyzed and compared to the contour lines derived from the topographical maps 1:50.000. The magnitude of the expected flow was estimated using Snyder's Model based on the morphometric data acquired by DEM of the catchment area. The results indicate that maximum discharge peak reaches 2694,3 m3/sec, the mean is 303,7 m3/sec and the minimum is 74,3 m3/sec. The runoff was estimated at 252,2. 610 m3/s, the mean is 41,5. 610 m3/s and the minimum is 12,4. 610 m3/s.Keywords: Desert flood, Saudi Arabia, Snyder's Model, flow estimation
Procedia PDF Downloads 3092672 Travel Time Estimation of Public Transport Networks Based on Commercial Incidence Areas in Quito Historic Center
Authors: M. Fernanda Salgado, Alfonso Tierra, David S. Sandoval, Wilbert G. Aguilar
Abstract:
Public transportation buses usually vary the speed depending on the places with the number of passengers. They require having efficient travel planning, a plan that will help them choose the fast route. Initially, an estimation tool is necessary to determine the travel time of each route, clearly establishing the possibilities. In this work, we give a practical solution that makes use of a concept that defines as areas of commercial incidence. These areas are based on the hypothesis that in the commercial places there is a greater flow of people and therefore the buses remain more time in the stops. The areas have one or more segments of routes, which have an incidence factor that allows to estimate the times. In addition, initial results are presented that verify the hypotheses and that promise adequately the travel times. In a future work, we take this approach to make an efficient travel planning system.Keywords: commercial incidence, planning, public transport, speed travel, travel time
Procedia PDF Downloads 2522671 “Chasing Hope”: Parents’ Perspectives on Complementary and Alternative Interventions for Autism Spectrum Disorder Children in Kazakhstan
Authors: Sofiya An, Akbota Kanderzhanova, Assel Akhmetova, Faye Foster, Chee K. Chan
Abstract:
Healthcare, education and social support for children with autism in Kazakhstan has been evolving and transforming over the last three decades. There is still limited knowledge of the use of complementary and alternative medicine by families caring for autistic children in this post-Soviet region. An exploratory qualitative focus group study of Kazakhstani families was carried out to capture and understand their experiences of using complementary and alternative (CAM) medicine. A total of six focus groups were conducted in five cities across the country including Nur-Sultan, Almaty, Kyzylorda, Karaganda and Taraz. The perceived factors driving the availability, choice, and use of complementary and alternative medicine by families of autistic children in the country were distilled and evaluated. The data collected was analyzed using a framework analysis and themes and subthemes were developed. Two major themes stood out. The first was the “unmet needs”, which relates to the predisposing factors that motivate parents to CAM uptake, and the second was the “chasing hope”, which relates to the enabling factors that facilitate parents’ uptake of CAM. Fear of missing out (FOMO) is a latent underlying motivation underscoring these two themes as well. Parents of autism spectrum disorder (ASD) children in Kazakhstan have to deal with many challenges when seeking treatment for their children with ASD. They are prepared and resort to try out whatever CAM interventions available. The motivation and rationale of choice of use is driven by the lack of options and the hope of any potential positive outcome rather than from rational decisions based on efficacy or the evidence-based data of CAM. Parents get desperate and are willing to try CAM regardless of and independent of their cultural and belief systems and they do not want to miss out just in case it might work. This study also gives an international and cross-cultural perspective on the motives, choice and practice of parents with ASD children using CAM in Kazakhstan, a Central Asian country.Keywords: autism spectrum disorder, Central Asia, complementary and alternative medicine, cross-cultural perspective, qualitative research
Procedia PDF Downloads 1442670 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 4282669 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz
Abstract:
Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.Keywords: poverty line, risk of poverty, auxiliary variable, ratio method
Procedia PDF Downloads 4562668 Ideas for Musical Activities and Games in the Early Year (IMAGINE-Autism): A Case Study Approach
Authors: Tania Lisboa, Angela Voyajolu, Adam Ockelford
Abstract:
The positive impact of music on the development of children with autism is widely acknowledged: music offers a unique channel for communication, wellbeing and self-regulation, as well as access to culture and a means of creative engagement. Yet, no coherent program exists for parents, carers and teachers to follow with their children in the early years, when the need for interventions is often most acute. Hence, research and the development of resources is urgently required. Autism is a project with children on the autism spectrum. The project aims at promoting the participants’ engagement with music through involvement in specially-designed musical activities with parents and carers. The main goal of the research is to verify the effectiveness of newly designed resources and strategies, which are based on the Sounds of Intent in the Early Years (SoI-EY) framework of musical development. This is a pilot study, comprising case studies of five children with autism in the early years. The data comprises semi-structured interviews, observations of videos, and feedback from parents on resources. Interpretative Phenomenological Analysis was chosen to analyze the interviews. The video data was coded in relation to the SoI-EY framework. The feedback from parents was used to evaluate the resources (i.e. musical activity cards). The participants’ wider development was also assessed through selected elements of the Early Years Foundation Stage (EYFS), a national assessment framework used in England: specifically, communication, language and social-emotional development. Five families of children on the autism spectrum (aged between 4-8 years) participated in the pilot. The research team visited each family 4 times over a 3-month period, during which the children were observed, and musical activities were suggested based on the child’s assessed level of musical development. Parents then trialed the activities, providing feedback and gathering further video observations of their child’s musical engagement between visits. The results of one case study will be featured in this paper, in which the evidence suggests that specifically tailored musical activity may promote communication and social engagement for a child with language difficulties on the autism spectrum. The resources were appropriate for the children’s involvement in musical activities. Findings suggest that non-specialist musical engagement with family and carers can be a powerful means to foster communication. The case study featured in this paper illustrates this with a child of limited verbal ability. There is a need for further research and development of resources that can be made available to all those working with children on the autism spectrum.Keywords: autism, development, music education, resources
Procedia PDF Downloads 1032667 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data
Authors: Mohamed Amhal, Jose Sayritupac
Abstract:
Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems
Procedia PDF Downloads 1762666 The Impact of Sensory Overload on Students on the Autism Spectrum in Italian Inclusive Classrooms: Teachers' Perspectives and Training Needs
Authors: Paola Molteni, Luigi d’Alonzo
Abstract:
Background: Sensory issues are now considered one of the key aspects in defining and diagnosing autism, changing the perspectives on behavioural analysis and intervention in mainstream educational services. However, Italian teachers’ training is yet not specific on the topic of autism and its sensory-related effects and this research investigates the teacher’s capability in understanding the student’s needs and his/her challenging behaviours considering sensory perceptions. Objectives: The research aims to analyse mainstream schools teachers’ awareness on students’ sensory perceptions and how this affects classroom inclusion and learning process. The research questions are: i) Are teachers able to identify student’s sensory issues?; ii) Are trained teachers more able to identify sensory problems then untrained ones?; iii) What is the impact of sensory issues on inclusion in mainstream classrooms?; iv) What should teachers know about autistic sensory dimensions? Methods: This research was designed as a pilot study that involves a multi-methods approach, including action and collaborative research methodology. The designed research allows the researcher to catch the complexity of a province school district (from kindergarten to high school) through a deep detailed analysis of selected aspects. The researcher explored the questions described above through 133 questionnaires and 6 focus groups. The qualitative and quantitative data collected during the research were analysed using the Interpretative Phenomenological Analysis (IPA). Results: Mainstream schools teachers are not able to confidently recognise sensory issues of children included in the classroom. The research underlines: how professionals with no specific training on autism are not able to recognise sensory problems in students on the spectrum; how hearing and sight issues have higher impact on classroom inclusion and student’s learning process; how a lack of understanding is often followed by misinterpretations of the impact of sensory issues and challenging behaviours. Conclusions: As this research has shown, promoting and enhancing the importance of understanding sensory issues related to autism is fundamental to enable mainstream schools teachers to define educational and life-long plans able to properly answer the student’s needs and support his/her real inclusion in the classroom. This study is a good example of how the educational research can meet and help the daily practice in working with people on the autism spectrum and support the training design for mainstream school teachers: the emerging need of designed preparation on sensory issues is fundamental to be considered when planning school district in-service training programmes, specifically declined for inclusive services.Keywords: autism spectrum condition, scholastic inclusion, sensory overload, teacher's training
Procedia PDF Downloads 3172665 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1332664 Integrative System of GDP, Emissions, Health Services and Population Health in Vietnam: Dynamic Panel Data Estimation
Authors: Ha Hai Duong, Amnon Levy Livermore, Kankesu Jayanthakumaran, Oleg Yerokhin
Abstract:
The issues of economic development, the environment and human health have been investigated since 1990s. Previous researchers have found different empirical evidences of the relationship between income and environmental pollution, health as determinant of economic growth, and the effects of income and environmental pollution on health in various regions of the world. This paper concentrates on integrative relationship analysis of GDP, carbon dioxide emissions, and health services and population health in context of Vietnam. We applied the dynamic generalized method of moments (GMM) estimation on datasets of Vietnam’s sixty-three provinces for the years 2000-2010. Our results show the significant positive effect of GDP on emissions and the dependence of population health on emissions and health services. We find the significant relationship between population health and GDP. Additionally, health services are significantly affected by population health and GDP. Finally, the population size too is other important determinant of both emissions and GDP.Keywords: economic development, emissions, environmental pollution, health
Procedia PDF Downloads 6252663 Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide
Authors: Jacob Lewis Watts, Adam F. A. Pellegrini
Abstract:
Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity.Keywords: climate change, fire regimes, root economic spectrum, fine roots
Procedia PDF Downloads 1232662 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 1352661 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates
Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau
Abstract:
There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.Keywords: duration estimates, long durations, passage of time judgements, task demands
Procedia PDF Downloads 1302660 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4512659 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 2522658 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy
Authors: Chhabi Nigam, S. Ramakrishnan
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR
Procedia PDF Downloads 218