Search results for: reuse of wastewater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1309

Search results for: reuse of wastewater

709 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow

Procedia PDF Downloads 307
708 Wastewater Treatment in the Abrasives Industry via Fenton and Photo-Fenton Oxidation Processes: A Case Study from Peru

Authors: Hernan Arturo Blas López, Gustavo Henndel Lopes, Antonio Carlos Silva Costa Teixeira, Carmen Elena Flores Barreda, Patricia Araujo Pantoja

Abstract:

Phenols are toxic for life and the environment and may come from many sources. Uncured phenolic monomers present in phenolic resins used as binders in grinding wheels and emery paper can contaminate industrial wastewaters in abrasives manufacture plants. Furthermore, vestiges of resol and novolacs resins generated by wear and tear of abrasives are also possible sources of water contamination by phenolics in these facilities. Fortunately, advanced oxidation by dark Fenton and photo-Fenton techniques are capable of oxidizing phenols and their degradation products up to their mineralization into H₂O and CO₂. The maximal allowable concentrations for phenols in Peruvian waterbodies is very low, such that insufficiently treated effluents from the abrasives industry are a potential environmental noncompliance. The current case study highlights findings obtained during the lab-scale application of Fenton’s and photo-assisted Fenton’s chemistries to real industrial wastewater samples from an abrasives manufacture plant in Peru. The goal was to reduce the phenolic content and sample toxicity. For this purpose, two independent variables-reaction time and effect of ultraviolet radiation–were studied as for their impacts on the concentration of total phenols, total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, diluted samples (1 L) of the industrial effluent were treated with Fenton’s reagent (H₂O₂ and Fe²⁺ from FeSO₄.H₂O) during 10 min in a photochemical batch reactor (Alphatec RFS-500, Brazil) at pH 2.92. In the case of photo-Fenton tests with ultraviolet lamps of 9 W, UV-A, UV-B and UV-C lamps were evaluated. All process conditions achieved 100% of phenols degraded within 5 minutes. TOC, BOD and COD decreased by 49%, 52% and 86% respectively (all processes together). However, Fenton treatment was not capable of reducing BOD, COD and TOC below a certain value even after 10 minutes, contrarily to photo-Fenton. It was also possible to conclude that the processes here studied degrade other compounds in addition to phenols, what is an advantage. In all cases, elevated effluent dilution factors and high amounts of oxidant agent impact negatively the overall economy of the processes here investigated.

Keywords: fenton oxidation, wastewater treatment, phenols, abrasives industry

Procedia PDF Downloads 317
707 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 269
706 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria

Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi

Abstract:

Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.

Keywords: wastawater, constructed wetland, anammox, removal

Procedia PDF Downloads 104
705 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water

Authors: Nabiyeva Jamala

Abstract:

We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.

Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide

Procedia PDF Downloads 73
704 Dehalogenation of Aromatic Compounds in Wastewater by Bacterial Cultures

Authors: Anne Elain, Magali Le Fellic

Abstract:

Halogenated Aromatic Compounds (HAC) are major organic pollutants that are detected in several environmental compartments as a result of their widespread use as solvents, pesticides and other industrial chemicals. The degradation of HAC simultaneously at low temperature and under saline conditions would be useful for remediation of polluted sites. Hence, microbial processes based on the metabolic activities of anaerobic bacteria are especially attractive from an economic and environmental point of view. Metabolites are generally less toxic, less likely to bioaccumulate and more susceptible for further degradation. Studies on biological reductive dehalogenation have largely been restricted to chlorinated compounds while relatively few have focussed on other HAC i.e., fluorinated, brominated or iodinated compounds. The objectives of the present work were to investigate the biodegradation of a mixture of triiodoaromatic molecules in industrial wastewater by an enriched bacterial consortium. Biodegradation of the mixture was studied during batch experiments in an anaerobic reactor. The degree of mineralization and recovery of halogen were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron donor was found to stimulate anaerobic reductive dehalogenation of HAC with a deiodination rate up to 12.4 mg.L-1 per day. Sodium chloride even at high concentration (10 mM) was found to have no influence on the degradation rates nor on the microbial viability. An analysis of the 16S rDNA (MicroSeq®) revealed that at least 6 bacteria were predominant in the enrichment, including Pseudomonas aeruginosa, Pseudomonas monteilii, Kocuria rhizophila, Ochrobacterium anthropi, Ralstonia pickettii and Rhizobium rhizogenes.

Keywords: halogenated aromatics, anaerobic biodegradation, deiodination, bacterial consortium

Procedia PDF Downloads 177
703 Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach

Authors: Thobela Conco, Sheena Kumari, Thor Stenstrom, Simona Rosetti, Valter Tandoi, Faizal Bux

Abstract:

Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics.

Keywords: activated sludge, amyloid proteins, epiphytic bacteria, filamentous bacteria

Procedia PDF Downloads 427
702 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review

Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek

Abstract:

High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.

Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste

Procedia PDF Downloads 225
701 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.

Keywords: biosorption, ICP-AES, lead (Pb), SEM

Procedia PDF Downloads 385
700 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 249
699 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength

Procedia PDF Downloads 302
698 Rotational Energy Recovery System

Authors: Vijayendra Anil Menon, Ashwath Narayan Murali

Abstract:

The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.

Keywords: KERS, Battery, Wheels, Efficiency.

Procedia PDF Downloads 394
697 A Review of the Factors That Influence on Nutrient Removal in Upflow Filters

Authors: Ali Alzeyadi, Edward Loffill, Rafid Alkhaddar Ali Alattabi

Abstract:

Phosphate, ammonium, and nitrates are forms of nutrients; they are released from different sources. High nutrient levels contribute to the eutrophication of water bodies by accelerating the extraordinary growth of algae. Recently, many filtration and treatment systems were developed and used for different removal processes. Due to enhanced operational aspects for the up-flow, continuous, granular Media filter researchers became more interested in further developing this technology and its performance for nutrient removal from wastewater. Environmental factors significantly affect the filtration process performance, and understanding their impact will help to maintain the nutrient removal process. Phosphate removal by phosphate sorption materials PSMs and nitrogen removal biologically are the methods of nutrient removal that have been discussed in this paper. Hence, the focus on the factors that influence these processes is the scope of this work. The finding showed the presence of factors affecting both removal processes; the size, shape, and roughness of the filter media particles play a crucial role in supporting biofilm formation. On the other hand, all of which are effected on the reactivity of surface between the media and phosphate. Many studies alluded to factors that have significant influence on the biological removal for nitrogen such as dissolved oxygen, temperature, and pH; this is due to the sensitivity of biological processes while the phosphate removal by PSMs showed less affected by these factors. This review work provides help to the researchers in create a comprehensive approach in regards study the nutrient removal in up flow filtration systems.

Keywords: nitrogen biological treatment, nutrients, psms, upflow filter, wastewater treatment

Procedia PDF Downloads 323
696 Fluoranthene Removal in Wastewater Using Biological and Physico-Chemical Methods

Authors: Angelica Salmeron Alcocer, Deifilia Ahuatzi Chacon, Felipe Rodriguez Casasola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are produced naturally (forest fires, volcanic eruptions) and human activity (burning fossil fuels). Concern for PAHs is due to their toxic, mutagenic and carcinogenic effects and so pose a potential risk to human health and ecology. Therefore these are considered the most toxic components of oil, they are highly hydrophobic, making them easily depositable on the floor, air and water. One method of removing PAHs of contaminated soil used surfactants such as Tween 80, which it has been reported as less toxic and also increases the solubility of the PAH compared to other surfactants, fluoranthene is a PAH with molecular formula C16H10, its name derives from the fluorescence which presents to UV light. In this paper, a study of the fluoranthene removal solubilized with Tween 80 in synthetic wastewater using a microbial community (isolated from soil of coffee plantations in the state of Veracruz, Mexico) and Fenton oxidation method was performed. The microbial community was able to use both tween 80 and fluoranthene as carbon sources for growth, when the biological treatment in batch culture was applied, 100% of fluoranthene was mineralized, this only occurred at an initial concentration of 100 ppm, but by increasing the initial concentration of fluoranthene the removal efficiencies decay and degradation time increases due to the accumulation of byproducts more toxic or less biodegradable, however when the Fenton oxidation was previously applied to the biological treatment, it was observed that removal of fluoranthene improved because it is consumed approximately 2.4 times faster.

Keywords: fluoranthene, polycyclic aromatic hydrocarbons, biological treatment, fenton oxidation

Procedia PDF Downloads 241
695 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 142
694 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment

Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa

Abstract:

Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).

Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks

Procedia PDF Downloads 211
693 Open educational Resources' Metadata: Towards the First Star to Quality of Open Educational Resources

Authors: Audrey Romero-Pelaez, Juan Carlos Morocho-Yunga

Abstract:

The increasing amount of open educational resources (OER) published on the web for consumption in teaching and learning environments also generates a growing need to ensure the quality of these resources. The low level of OER discovery is one of the most significant drawbacks when faced with its reuse, and as a consequence, high-quality educational resources can go unnoticed. Metadata enables the discovery of resources on the web. The purpose of this study is to lay the foundations for open educational resources to achieve their first quality star within the Quality4OER Framework. In this study, we evaluate the quality of OER metadata and establish the main guidelines on metadata quality in this context.

Keywords: open educational resources, OER quality, quality metadata

Procedia PDF Downloads 242
692 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 225
691 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 163
690 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water

Authors: S. Shanthi

Abstract:

Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.

Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon

Procedia PDF Downloads 250
689 Chromium (VI) Removal from Aqueous Solutions by Ion Exchange Processing Using Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071 Resins: Batch Ion Exchange Modeling

Authors: Havva Tutar Kahraman, Erol Pehlivan

Abstract:

In recent years, environmental pollution by wastewater rises very critically. Effluents discharged from various industries cause this challenge. Different type of pollutants such as organic compounds, oxyanions, and heavy metal ions create this threat for human bodies and all other living things. However, heavy metals are considered one of the main pollutant groups of wastewater. Therefore, this case creates a great need to apply and enhance the water treatment technologies. Among adopted treatment technologies, adsorption process is one of the methods, which is gaining more and more attention because of its easy operations, the simplicity of design and versatility. Ion exchange process is one of the preferred methods for removal of heavy metal ions from aqueous solutions. It has found widespread application in water remediation technologies, during the past several decades. Therefore, the purpose of this study is to the removal of hexavalent chromium, Cr(VI), from aqueous solutions. Cr(VI) is considered as a well-known highly toxic metal which modifies the DNA transcription process and causes important chromosomic aberrations. The treatment and removal of this heavy metal have received great attention to maintaining its allowed legal standards. The purpose of the present paper is an attempt to investigate some aspects of the use of three anion exchange resins: Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071. Batch adsorption experiments were carried out to evaluate the adsorption capacity of these three commercial resins in the removal of Cr(VI) from aqueous solutions. The chromium solutions used in the experiments were synthetic solutions. The parameters that affect the adsorption, solution pH, adsorbent concentration, contact time, and initial Cr(VI) concentration, were performed at room temperature. High adsorption rates of metal ions for the three resins were reported at the onset, and then plateau values were gradually reached within 60 min. The optimum pH for Cr(VI) adsorption was found as 3.0 for these three resins. The adsorption decreases with the increase in pH for three anion exchangers. The suitability of Freundlich, Langmuir and Scatchard models were investigated for Cr(VI)-resin equilibrium. Results, obtained in this study, demonstrate excellent comparability between three anion exchange resins indicating that Eichrom 1-X4 is more effective and showing highest adsorption capacity for the removal of Cr(VI) ions. Investigated anion exchange resins in this study can be used for the efficient removal of chromium from water and wastewater.

Keywords: adsorption, anion exchange resin, chromium, kinetics

Procedia PDF Downloads 260
688 Impact Of Anthropogenic Pressures On The Water Quality Of Hammams In The Municipality Of Dar Bouazza, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui

Abstract:

Public baths or hammams play an essential role in the Moroccan urban and peri-urban fabric, constituting part of the cultural heritage. Urbanization in Morocco has led to a significant increase in the number of these traditional hammams: between 6,000 and 15,000 units (to be updated) operate with a traditional heating system. Numerous studies on energy consumption indicate that a hammam consumes between 60 and 120m3 of water and one to two tons of wood per day. On average, one ton of wood costs 650 Moroccan dirhams (approximately 60 Euros), resulting in a daily fuel cost of around 1300 Moroccan dirhams (about 120 Euros). These high consumptions result in significant environmental nuisances generated by: Wastewater: in the case of hammams located on the outskirts of Casablanca, such as our study area, the Municipality of Dar Bouazza, most of these waters are directly discharged into the receiving environment without prior treatment because they are not connected to the sanitation network. Emissions of black smoke and ashes produced by the often incomplete combustion of wood. Reducing the liquid and gas emissions generated by these hammams thus poses an environmental and sustainable development challenge that needs to be addressed. In this context, we initiated the Eco-hammam project with the objective of implementing innovative and locally adapted solutions to limit the negative impacts of hammams on the environment and reduce water and wood energy consumption. This involves treating and reusing wastewater through a compact system with heat recovery and using alternative energy sources to increase and enhance the energy efficiency of these traditional hammams. To achieve this, on-site surveys of hammams in the Dar Bouazza Municipality and the application of statistical approaches to the results of the physico-chemical and bacteriological characterization of incoming and outgoing water from these units were conducted. This allowed us to establish an environmental diagnosis of these entities. In conclusion, the analysis of well water used by Dar Bouazza's hammams revealed the presence of certain parameters that could be hazardous to public health, such as total germs, total coliforms, sulfite-reducing spores, chromium, nickel, and nitrates. Therefore, this work primarily focuses on prospecting upstream of our study area to verify if other sources of pollution influence the quality of well water.

Keywords: public baths, hammams, cultural heritage, urbanization, water consumption, wood consumption, environmental nuisances, wastewater, environmental challenge, sustainable development, Eco-hammam project, innovative solutions, local adaptation, negative impacts, water conservation, wastewater treatment, heat recovery, alternative energy sources, on-site surveys, Dar Bouazza Municipality, statistical approaches, physico-chemical characterization, bacteriological characterization, environmental diagnosis, well water analysis, public health, pollution sources, well water quality

Procedia PDF Downloads 72
687 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 257
686 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor

Authors: Neeraj Sahu, Ahmad Saadiq

Abstract:

Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.

Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor

Procedia PDF Downloads 219
685 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor

Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra

Abstract:

The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.

Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor

Procedia PDF Downloads 339
684 Investigating the Application of Composting for Phosphorous Recovery from Alum Precipitated and Ferric Precipitated Sludge

Authors: Saba Vahedi, Qiuyan Yuan

Abstract:

A vast majority of small municipalities and First Nations communities in Manitoba operate facultative or aerated lagoons for wastewater treatment, and most of them use Ferric Chloride (FeCl3) or alum (usually in the form of Al2(SO4)3 ·18H2O) as coagulant for phosphorous removal. The insoluble particles that form during the coagulation process result in a massive volume of sludge which is typically left in the lagoons. Therefore, phosphorous, which is a valuable nutrient, is lost in the process. In this project, the complete recovery of phosphorous from the sludge that is produced in the process of phosphorous removal from wastewater lagoons by using a controlled composting process is investigated. Objective The main objective of this project is to compost alum precipitated sludge that is produced in the process of phosphorous removal in wastewater treatment lagoons in Manitoba. The ultimate goal is to have a product that will meet the characteristics of Class A biosolids in Canada. A number of parameters, including the bioavailability of nutrients in the composted sludge and the toxicity of the sludge, will be evaluated Investigating the bioavailability of phosphorous in the final compost product. The compost will be used as a source of P compared to a commercial fertilizer (monoammonium phosphate MAP) Experimental setup Three different batches of composts piles have been run using the Alum sludge and Ferric sludge. The alum phosphate sludge was collected from an innovative phosphorous removal system at the RM of Taché . The collected sludge was sent to ALS laboratory to analyze the C/N ratio, TP, TN, TC, TAl, moisture contents, pH, and metals concentrations. Wood chips as the bulking agent were collected at the RM of Taché landfill The sludge in the three piles were mixed with 3x dry woodchips. The mixture was turned every week manually. The temperature, the moisture content, and pH were monitored twice a week. The temperature of the mixtures was remained above 55 °C for two weeks. Each pile was kept for ten weeks to get mature. The final products have been applied to two different plants to investigate the bioavailability of P in the compost product as well as the toxicity of the product. The two types of plants were selected based on their sensitivity, growth time, and their compatibility with the Manitoba climate, which are Canola, and switchgrass. The pots are weighed and watered every day to replenish moisture lost by evapotranspiration. A control experiment is also conducted by using topsoil soil and chemical fertilizers (MAP). The experiment will be carried out in a growth room maintained at a day/night temperature regime of 25/15°C, a relative humidity of 60%, and a corresponding photoperiod of 16 h. A total of three cropping (seeding to harvest) cycles need be completed, with each cycle at 50 d in duration. Harvested biomass must be weighed and oven-dried for 72 h at 60°C. The first cycle of growth Canola and Switchgrasses in the alum sludge compost, harvested at the day 50, oven dried, chopped into bits and fine ground in a mill grinder (< 0.2mm), and digested using the wet oxidation method in which plant tissue samples were digested with H2SO4 (99.7%) and H2O2 (30%) in an acid block digester. The digested plant samples need to be analyzed to measure the amount of total phosphorus.

Keywords: wastewater treatment, phosphorus removal, composting alum sludge, bioavailibility of pohosphorus

Procedia PDF Downloads 71
683 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 390
682 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 394
681 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka

Abstract:

Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.

Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment

Procedia PDF Downloads 356
680 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 56