Search results for: probabilistic seismic hazard analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28674

Search results for: probabilistic seismic hazard analysis

28074 Fire Safety Assessment of At-Risk Groups

Authors: Naser Kazemi Eilaki, Carolyn Ahmer, Ilona Heldal, Bjarne Christian Hagen

Abstract:

Older people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to safe places. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. This research deals with the fire safety of mentioned people's buildings by means of probabilistic methods. For this purpose, fire safety is addressed by modeling the egress of our target group from a hazardous zone to a safe zone. A common type of detached house with a prevalent plan has been chosen for safety analysis, and a limit state function has been developed according to the time-line evacuation model, which is based on a two-zone and smoke development model. An analytical computer model (B-Risk) is used to consider smoke development. Since most of the involved parameters in the fire development model pose uncertainty, an appropriate probability distribution function has been considered for each one of the variables with indeterministic nature. To achieve safety and reliability for the at-risk groups, the fire safety index method has been chosen to define the probability of failure (causalities) and safety index (beta index). An improved harmony search meta-heuristic optimization algorithm has been used to define the beta index. Sensitivity analysis has been done to define the most important and effective parameters for the fire safety of the at-risk group. Results showed an area of openings and intervals to egress exits are more important in buildings, and the safety of people would improve with increasing dimensions of occupant space (building). Fire growth is more critical compared to other parameters in the home without a detector and fire distinguishing system, but in a home equipped with these facilities, it is less important. Type of disabilities has a great effect on the safety level of people who live in the same home layout, and people with visual impairment encounter more risk of capturing compared to visual and movement disabilities.

Keywords: fire safety, at-risk groups, zone model, egress time, uncertainty

Procedia PDF Downloads 103
28073 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap

Authors: Furqan Farooq, Arslan Akbar, Sana Gul

Abstract:

Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.

Keywords: seismic design, carbon fiber, strengthening, ductility

Procedia PDF Downloads 202
28072 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 398
28071 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges

Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov

Abstract:

Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.

Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment

Procedia PDF Downloads 101
28070 Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction

Authors: K. Farheen, A. Munir

Abstract:

Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor.

Keywords: buildings, SSI, shear wave velocity, R factor

Procedia PDF Downloads 212
28069 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 330
28068 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 146
28067 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 547
28066 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 435
28065 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 497
28064 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 485
28063 The Evaluation of Shear Modulus (Go) Consistency State of Consolidation Cohesive Soils and Seismic Reflection Survey Using Degree of Soil Consolidation

Authors: Abdul Halim Abdul, Wan Ismail Wan Yusoff

Abstract:

The geological formation at Limau Manis Besar area, are consist of low grade metamorphic rock and undulating mountaineers, rugged terrain and the quite steeply 45 degree slope gradient. The objectives of this paper are present the methods and devices used in measurement of P-wave velocity to estimate the initial Shear Modulus (Go) in steady state and critical state soil consolidation. The relationship between SPT-N values and the Shear Modulus (Go) at very small strain is widely considered to be evaluated. Based on the seismic reflection survey, the constant (K) poroelastic theory, mean effectives stress and primer wave velocity (Vs) increase as the soil depth increase. The steady state and critical state, Degree of Soil Consolidation(U) concept is used to interpret the behavior of Shear Modulus (Go). The relationship between Consolidation Test and Seismic Reflection Survey is also discussed.

Keywords: geological setting, shear modulus, poroelastic theory, steady state and none steady state degree of soil consolidation, consolidation test

Procedia PDF Downloads 474
28062 Spectral Analysis Applied to Variables of Oil Wells Profiling

Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon

Abstract:

Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.

Keywords: oil, well, spectral analysis, oil extraction

Procedia PDF Downloads 534
28061 The Probability Foundation of Fundamental Theoretical Physics

Authors: Quznetsov Gunn

Abstract:

In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter.

Keywords: classical theory of probability, logical foundation of fundamental theoretical physics, masses, moments, energies, spins

Procedia PDF Downloads 295
28060 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 269
28059 Delineation of the Geoelectric and Geovelocity Parameters in the Basement Complex of Northwestern Nigeria

Authors: M. D. Dogara, G. C. Afuwai, O. O. Esther, A. M. Dawai

Abstract:

The geology of Northern Nigeria is under intense investigation particularly that of the northwest believed to be of the basement complex. The variability of the lithology is consistently inconsistent. Hence, the need for a close range study, it is, in view of the above that, two geophysical techniques, the vertical electrical sounding employing the Schlumberger array and seismic refraction methods, were used to delineate the geoelectric and geovelocity parameters of the basement complex of northwestern Nigeria. A total area of 400,000 m² was covered with sixty geoelectric stations established and sixty sets of seismic refraction data collected using the forward and reverse method. From the interpretation of the resistivity data, it is suggestive that the area is underlain by not more than five geoelectric layers of varying thicknesses and resistivities when a maximum half electrode spread of 100m was used. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. The results of the two techniques, suggests that the area of study has an undulating bedrock topography with geoeletric and geovelocity layers composed of weathered rock materials.

Keywords: basement complex, delineation, geoelectric, geovelocity, Nigeria

Procedia PDF Downloads 150
28058 Old and New Paradigms for Pre-Earthquake Prevention and Post-Earthquake Regeneration of Territories in Crisis in Italy

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

Most of the Italian territory is at seismic risk. Many earthquakes have hit Italy, and devastating effects have been generated. The specific objective of the research is to distinguish the negative approaches that have generated unacceptable social situations of marginalization, abandonment, and economic regression, from positive methodological approaches. On the basis of the different situations examined, the study proposes strategies and guidelines to obtain the best possible results, in Italy or abroad, in the event of new earthquakes. At national and international level, many theoretical studies address the aspects of prevention, while the comparisons, carried out in this study, between the techniques and the operative procedures applied and the results obtained are rare. The adopted methodology compares the different pre-earthquake urban-planning approaches, for the emergency (temporary urban planning), and for the post-earthquake (socio-economic-territorial processes) in Italy. Attention is placed on the current consolidated planning and programming acquisitions, pre and post-earthquake. The main results of the study concern the prospects in Italy of protection from seismic risks in the next decades. An integrated settlement system for a new economic and social model, aimed at the rebirth of territories in crisis, is proposed. Finally, the conclusions describe the disciplinary positions, procedures and the fundamental points generally shared by the scientific community for each approach, in order to identify the strategic choices and the disciplinary and management paths that will be followed in the coming decades.

Keywords: post-earthquake, seismic emergency, seismic prevention, urban planning interventions in Italy

Procedia PDF Downloads 128
28057 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building

Procedia PDF Downloads 549
28056 Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes

Authors: Cui Fu, Yi-Zhou Zhuang, Sheng-Zhi Wang

Abstract:

Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges.

Keywords: ductility, energy dissipation capacity, micropile with predrilled oversized hole, seismic performance, semi-integral abutment bridge

Procedia PDF Downloads 432
28055 Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study

Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan

Abstract:

Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently.

Keywords: FLACD 3D software, pile group, settlement, soil

Procedia PDF Downloads 128
28054 Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover

Authors: E. O. Okan, A. Kepic, P. Williams

Abstract:

Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning.

Keywords: crustal scale, exploration, IOCG deposit, modelling, seismic surveys

Procedia PDF Downloads 325
28053 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 187
28052 Modern Well Logs Technology to Improve Geological Model for Libyan Deep Sand Stone Reservoir

Authors: Tarek S. Duzan, Fisal Ben Ammer, Mohamed Sula

Abstract:

In some places within Sirt Basin-Libya, it has been noticed that seismic data below pre-upper cretaceous unconformity (PUK) is hopeless to resolve the large-scale structural features and is unable to fully determine reservoir delineation. Seismic artifacts (multiples) are observed in the reservoir zone (Nubian Formation) below PUK, which complicate the process of seismic interpretation. The nature of the unconformity and the structures below are still ambiguous and not fully understood which generates a significant gap in characterizing the geometry of the reservoir, the uncertainty accompanied with lack of reliable seismic data creates difficulties in building a robust geological model. High resolution dipmeter is highly useful in steeply dipping zones. This paper uses FMl and OBMl borehole images (dipmeter) to analyze the structures below the PUK unconformity from two wells drilled recently in the North Gialo field (a mature reservoir). In addition, borehole images introduce new evidences that the PUK unconformity is angular and the bedding planes within the Nubian formation (below PUK) are significantly titled. Structural dips extracted from high resolution borehole images are used to construct a new geological model by the utilization of latest software technology. Therefore, it is important to use the advance well logs technology such as FMI-HD for any future drilling and up-date the existing model in order to minimize the structural uncertainty.

Keywords: FMI (formation micro imager), OBMI (oil base mud imager), UBI (ultra sonic borehole imager), nub sandstone reservoir in North gialo

Procedia PDF Downloads 319
28051 Bringing Together Student Collaboration and Research Opportunities to Promote Scientific Understanding and Outreach Through a Seismological Community

Authors: Michael Ray Brunt

Abstract:

China has been the site of some of the most significant earthquakes in history; however, earthquake monitoring has long been the provenance of universities and research institutions. The China Digital Seismographic Network was initiated in 1983 and improved significantly during 1992-1993. Data from the CDSN is widely used by government and research institutions, and, generally, this data is not readily accessible to middle and high school students. An educational seismic network in China is needed to provide collaboration and research opportunities for students and engaging students around the country in scientific understanding of earthquake hazards and risks while promoting community awareness. In 2022, the Tsinghua International School (THIS) Seismology Team, made up of enthusiastic students and facilitated by two experienced teachers, was established. As a group, the team’s objective is to install seismographs in schools throughout China, thus creating an educational seismic network that shares data from the THIS Educational Seismic Network (THIS-ESN) and facilitates collaboration. The THIS-ESN initiative will enhance education and outreach in China about earthquake risks and hazards, introduce seismology to a wider audience, stimulate interest in research among students, and develop students’ programming, data collection and analysis skills. It will also encourage and inspire young minds to pursue science, technology, engineering, the arts, and math (STEAM) career fields. The THIS-ESN utilizes small, low-cost RaspberryShake seismographs as a powerful tool linked into a global network, giving schools and the public access to real-time seismic data from across China, increasing earthquake monitoring capabilities in the perspective areas and adding to the available data sets regionally and worldwide helping create a denser seismic network. The RaspberryShake seismograph is compatible with free seismic data viewing platforms such as SWARM, RaspberryShake web programs and mobile apps are designed specifically towards teaching seismology and seismic data interpretation, providing opportunities to enhance understanding. The RaspberryShake is powered by an operating system embedded in the Raspberry Pi, which makes it an easy platform to teach students basic computer communication concepts by utilizing processing tools to investigate, plot, and manipulate data. THIS Seismology Team believes strongly in creating opportunities for committed students to become part of the seismological community by engaging in analysis of real-time scientific data with tangible outcomes. Students will feel proud of the important work they are doing to understand the world around them and become advocates spreading their knowledge back into their homes and communities, helping to improve overall community resilience. We trust that, in studying the results seismograph stations yield, students will not only grasp how subjects like physics and computer science apply in real life, and by spreading information, we hope students across the country can appreciate how and why earthquakes bear on their lives, develop practical skills in STEAM, and engage in the global seismic monitoring effort. By providing such an opportunity to schools across the country, we are confident that we will be an agent of change for society.

Keywords: collaboration, outreach, education, seismology, earthquakes, public awareness, research opportunities

Procedia PDF Downloads 72
28050 Fault Tree Analysis (FTA) of CNC Turning Center

Authors: R. B. Patil, B. S. Kothavale, L. Y. Waghmode

Abstract:

Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628.

Keywords: fault tree analysis (FTA), reliability analysis, risk assessment, hazard analysis

Procedia PDF Downloads 414
28049 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 127
28048 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 170
28047 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 226
28046 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
28045 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution

Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari

Abstract:

There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.

Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes

Procedia PDF Downloads 86