Search results for: graph mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1523

Search results for: graph mining

923 Developing Sustainable Tourism Practices in Communities Adjacent to Mines: An Exploratory Study in South Africa

Authors: Felicite Ann Fairer-Wessels

Abstract:

There has always been a disparity between mining and tourism mainly due to the socio-economic and environmental impacts of mines on both the adjacent resident communities and the areas taken up by the mining operation. Although heritage mining tourism has been actively and successfully pursued and developed in the UK, largely Wales, and Scandinavian countries, the debate whether active mining and tourism can have a mutually beneficial relationship remains imminent. This pilot study explores the relationship between the ‘to be developed’ future Nokeng Mine and its adjacent community, the rural community of Moloto, will be investigated in terms of whether sustainable tourism and livelihood activities can potentially be developed with the support of the mine. Concepts such as social entrepreneur, corporate social responsibility, sustainable development and triple bottom line are discussed. Within the South African context as a mineral rich developing country, the government has a statutory obligation to empower disenfranchised communities through social and labour plans and policies. All South African mines must preside over a Social and Labour Plan according to the Mineral and Petroleum Resources Development Act, No 28 of 2002. The ‘social’ component refers to the ‘social upliftment’ of communities within or adjacent to any mine; whereas the ‘labour’ component refers to the mine workers sourced from the specific community. A qualitative methodology is followed using the case study as research instrument for the Nokeng Mine and Moloto community with interviews and focus group discussions. The target population comprised of the Moloto Tribal Council members (8 in-depth interviews), the Moloto community members (17: focus groups); and the Nokeng Mine representatives (4 in-depth interviews). In this pilot study two disparate ‘worlds’ are potentially linked: on the one hand, the mine as social entrepreneur that is searching for feasible and sustainable ideas; and on the other hand, the community adjacent to the mine, with potentially sustainable tourism entrepreneurs that can tap into the resources of the mine should their ideas be feasible to build their businesses. Being an exploratory study the findings are limited but indicate that the possible success of tourism and sustainable livelihood activities lies in the fact that both the Mine and Community are keen to work together – the mine in terms of obtaining labour and profit; and the community in terms of improved and sustainable social and economic conditions; with both parties realizing the importance to mitigate negative environmental impacts. In conclusion, a relationship of trust is imperative between a mine and a community before a long term liaison is possible. However whether tourism is a viable solution for the community to engage in is debatable. The community could initially rather pursue the sustainable livelihoods approach and focus on life-supporting activities such as building, gardening, etc. that once established could feed into possible sustainable tourism activities.

Keywords: community development, mining tourism, sustainability, South Africa

Procedia PDF Downloads 301
922 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa

Authors: Abraham Addo-Bediako

Abstract:

Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.

Keywords: land use, health risk, metal pollution, water quality

Procedia PDF Downloads 86
921 Three-Stage Mining Metals Supply Chain Coordination and Product Quality Improvement with Revenue Sharing Contract

Authors: Hamed Homaei, Iraj Mahdavi, Ali Tajdin

Abstract:

One of the main concerns of miners is to increase the quality level of their products because the mining metals price depends on their quality level; however, increasing the quality level of these products has different costs at different levels of the supply chain. These costs usually increase after extractor level. This paper studies the coordination issue of a decentralized three-level supply chain with one supplier (extractor), one mineral processor and one manufacturer in which the increasing product quality level cost at the processor level is higher than the supplier and at the level of the manufacturer is more than the processor. We identify the optimal product quality level for each supply chain member by designing a revenue sharing contract. Finally, numerical examples show that the designed contract not only increases the final product quality level but also provides a win-win condition for all supply chain members and increases the whole supply chain profit.

Keywords: three-stage supply chain, product quality improvement, channel coordination, revenue sharing

Procedia PDF Downloads 182
920 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 142
919 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 148
918 Patterns in Fish Diversity and Abundance of an Abandoned Gold Mine Reservoirs

Authors: O. E. Obayemi, M. A. Ayoade, O. O. Komolafe

Abstract:

Fish survey was carried out for an annual cycle covering both rainy and dry seasons using cast nets, gill nets and traps at two different reservoirs. The objective was to examined the fish assemblages of the reservoirs and provide more additional information on the reservoir. The fish species in the reservoirs comprised of twelve species of six families. The results of the study also showed that five species of fish were caught in reservoir five while ten fish species were captured in reservoir six. Species such as Malapterurus electricus, Ctenopoma kingsleyae, Mormyrus rume, Parachanna obscura, Sarotherodon galilaeus, Tilapia mariae, C. guntheri, Clarias macromystax, Coptodon zilii and Clarias gariepinus were caught during the sampling period. There was a significant difference (p=0.014, t = 1.711) in the abundance of fish species in the two reservoirs. Seasonally, reservoirs five (p=0.221, t = 1.859) and six (p=0.453, t = 1.734) showed there was no significant difference in their fish populations. Also, despite being impacted with gold mining the diversity indices were high when compared to less disturbed waterbodies. The study concluded that the environments recorded low abundant fish species which suggests the influence of mining on the abundance and diversity of fish species.

Keywords: Igun, fish, Shannon-Wiener Index, Simpson index, Pielou index

Procedia PDF Downloads 105
917 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 271
916 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks

Authors: Amir Mirzaei

Abstract:

The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.

Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires

Procedia PDF Downloads 78
915 Geochemical Baseline and Origin of Trace Elements in Soils and Sediments around Selibe-Phikwe Cu-Ni Mining Town, Botswana

Authors: Fiona S. Motswaiso, Kengo Nakamura, Takeshi Komai

Abstract:

Heavy metals may occur naturally in rocks and soils, but elevated quantities of them are being gradually released into the environment by anthropogenic activities such as mining. In order to address issues of heavy metal water and soil pollution, a distinction needs to be made between natural and anthropogenic anomalies. The current study aims at characterizing the spatial distribution of trace elements and evaluate site-specific geochemical background concentrations of trace elements in the mine soils examined, and also to discriminate between lithogenic and anthropogenic sources of enrichment around a copper-nickel mining town in Selibe-Phikwe, Botswana. A total of 20 Soil samples, 11 river sediment, and 9 river water samples were collected from an area of 625m² within the precincts of the mine and the smelter. The concentrations of metals (Cu, Ni, Pb, Zn, Cr, Ni, Mn, As, Pb, and Co) were determined by using an ICP-MS after digestion with aqua regia. Major elements were also determined using ED-XRF. Water pH and EC were measured on site and recorded while soil pH and EC were also determined in the laboratory after performing water elution tests. The highest Cu and Ni concentrations in soil are 593mg/kg and 453mg/kg respectively, which is 3 times higher than the crustal composition values and 2 times higher than the South African minimum allowable levels of heavy metals in soils. The level of copper contamination was higher than that of nickel and other contaminants. Water pH levels ranged from basic (9) to very acidic (3) in areas closer to the mine/smelter. There is high variation in heavy metal concentration, eg. Cu suggesting that some sites depict regional natural background concentrations while other depict anthropogenic sources.

Keywords: contamination, geochemical baseline, heavy metals, soils

Procedia PDF Downloads 158
914 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
913 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 69
912 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects

Authors: Mai Ghazal, Ahmed Hammad

Abstract:

Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.

Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management

Procedia PDF Downloads 367
911 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis

Authors: Hamd Rezaeifar, Hamid Reza Sahriari

Abstract:

Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.

Keywords: accident, data mining, neural network, GIS

Procedia PDF Downloads 45
910 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data

Procedia PDF Downloads 319
909 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 409
908 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 76
907 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning

Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah

Abstract:

In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.

Keywords: 3D imaging, shotcrete, surface model, tunnel stability

Procedia PDF Downloads 290
906 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 104
905 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 70
904 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 189
903 The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose

Authors: Wagner Pereira, Alphonse Kelecom

Abstract:

Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones.

Keywords: biota dose, NORM, fish, environmental protection

Procedia PDF Downloads 256
902 Strategies to Enhance Compliance of Health and Safety Standards at the Selected Mining Industries in Limpopo Province, South Africa: Occupational Health Nurse’s Perspective

Authors: Livhuwani Muthelo

Abstract:

The health and safety of the miners in the South African mining industry are guided by the regulations and standards which are anticipated to promote a healthy work environment and fatalities. It is of utmost importance for the miners to comply with these regulations/standards to protect themselves from potential occupational health and safety risks, accidents, and fatalities. The purpose of this study was to develop and validate strategies to enhance compliance with the Health and safety standards within the mining industries of Limpopo province in South Africa. A mixed-method exploratory sequential research design was adopted. The population consisted of 5350 miners. Purposive sampling was used to select the participants in the qualitative strand and stratified random sampling in the quantitative strand. Semi-structured interviews were conducted among the occupational health nurse practitioners and the health and safety team. Thematic analysis was used to generate an understanding of the interviews. In the quantitative strand, a survey was conducted using a self-administered questionnaire. Data were analysed using SPSS version 26.0. A descriptive statistical test was used in the analysis of data including frequencies, means, and standard deviation. Cronbach's alpha test was used to measure internal consistency. The integrated results revealed that there are diverse experiences related to health and safety standards compliance among the mineworkers. The main findings were challenges related to leadership compliance and also related to the cost of maintaining safety, Miner's behavior-related challenges; the impact of non-compliance on the overall health of the miners was also described, the conflict between production and safety. Health and safety compliance is not just mere compliance with regulations and standards but a culture that warrants the miners and organization to take responsibility for their behavior and actions towards health and safety. Thus taking responsibility for your well-being and other miners.

Keywords: perceptions, compliance, health and safety, legislation, standards, miners

Procedia PDF Downloads 100
901 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 374
900 Identifying Coloring in Graphs with Twins

Authors: Souad Slimani, Sylvain Gravier, Simon Schmidt

Abstract:

Recently, several vertex identifying notions were introduced (identifying coloring, lid-coloring,...); these notions were inspired by identifying codes. All of them, as well as original identifying code, is based on separating two vertices according to some conditions on their closed neighborhood. Therefore, twins can not be identified. So most of known results focus on twin-free graph. Here, we show how twins can modify optimal value of vertex-identifying parameters for identifying coloring and locally identifying coloring.

Keywords: identifying coloring, locally identifying coloring, twins, separating

Procedia PDF Downloads 146
899 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 517
898 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 127
897 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact

Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze

Abstract:

Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.

Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric

Procedia PDF Downloads 168
896 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 302
895 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira

Abstract:

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability

Procedia PDF Downloads 362
894 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 148