Search results for: forest garden
492 Educational Fieldworks towards Urban Biodiversity Preservation: Case Study of Japanese Gardens Management of Kanazawa City, Japan
Authors: Aida Mammadova, Juan Pastor Ivars
Abstract:
Japanese gardens can be considered as the unique hubs to preserve urban biodiversity, as they provide the habitat for the diverse network of living organisms, facilitating to the movement of the rare species around the urban landscape, became the refuge for the moss and many endangered species. For the centuries, Japanese gardens were considered as ecologically sustainable and well-organized ecosystems, due to the skilled maintenances and management. However, unfortunately, due to the depopulations and ageing in Japanese societies, gardens are becoming more abandoned, and there is an urgent need to increase the awareness about the importance of the Japanese gardens to preserve the urban biodiversity. In this study, we have conducted the participatory educational field trips for 12 students into the to the five gardens protected by Kanazawa City and learned about the preservation activities conducted at the governmental, municipal, and local levels. After the courses, students have found a strong linkage between the gardens with the traditional culture. Kanazawa City, for more than 400 years is famous with traditional craft makings and tea ceremonies, and it was noticed that the cultural diversity of the city was strongly supported by the biodiversity of the gardens, and loss of the gardens would bring to the loss of the traditional culture. Using the experiential approach during the fieldworks, it was observed by the students that the linkage between the bio-cultural diversity strongly depends on humans’ activities. The continuous management and maintenance of the gardens are the contributing factor for the preservation of urban diversity. However, garden management is very time and capital consuming process, and it was also noticed that there is a big need to attract all levels of the society to preserve the urban biodiversity through the participatory urbanism.Keywords: biodiversity, conservation, educational fieldwork, Japanese gardens
Procedia PDF Downloads 212491 Numerical Study of Fire Propagation in Confined and Open Area
Authors: Hadj Miloua, Abbes Azzi
Abstract:
The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.Keywords: fire, road tunnel, simulation, vegetation, wildland
Procedia PDF Downloads 514490 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 39489 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 115488 Role of Indigenous Peoples in Climate Change
Authors: Neelam Kadyan, Pratima Ranga, Yogender
Abstract:
Indigenous people are the One who are affected by the climate change the most, although there have contributed little to its causes. This is largely a result of their historic dependence on local biological diversity, ecosystem services and cultural landscapes as a source of their sustenance and well-being. Comprising only four percent of the world’s population they utilize 22 percent of the world’s land surface. Despite their high exposure-sensitivity indigenous peoples and local communities are actively responding to changing climatic conditions and have demonstrated their resourcefulness and resilience in the face of climate change. Traditional Indigenous territories encompass up to 22 percent of the world’s land surface and they coincide with areas that hold 80 percent of the planet’s biodiversity. Also, the greatest diversity of indigenous groups coincides with the world’s largest tropical forest wilderness areas in the Americas (including Amazon), Africa, and Asia, and 11 percent of world forest lands are legally owned by Indigenous Peoples and communities. This convergence of biodiversity-significant areas and indigenous territories presents an enormous opportunity to expand efforts to conserve biodiversity beyond parks, which tend to benefit from most of the funding for biodiversity conservation. Tapping on Ancestral Knowledge Indigenous Peoples are carriers of ancestral knowledge and wisdom about this biodiversity. Their effective participation in biodiversity conservation programs as experts in protecting and managing biodiversity and natural resources would result in more comprehensive and cost effective conservation and management of biodiversity worldwide. Addressing the Climate Change Agenda Indigenous Peoples has played a key role in climate change mitigation and adaptation. The territories of indigenous groups who have been given the rights to their lands have been better conserved than the adjacent lands (i.e., Brazil, Colombia, Nicaragua, etc.). Preserving large extensions of forests would not only support the climate change objectives, but it would respect the rights of Indigenous Peoples and conserve biodiversity as well. A climate change agenda fully involving Indigenous Peoples has many more benefits than if only government and/or the private sector are involved. Indigenous peoples are some of the most vulnerable groups to the negative effects of climate change. Also, they are a source of knowledge to the many solutions that will be needed to avoid or ameliorate those effects. For example, ancestral territories often provide excellent examples of a landscape design that can resist the negatives effects of climate change. Over the millennia, Indigenous Peoples have developed adaptation models to climate change. They have also developed genetic varieties of medicinal and useful plants and animal breeds with a wider natural range of resistance to climatic and ecological variability.Keywords: ancestral knowledge, cost effective conservation, management, indigenous peoples, climate change
Procedia PDF Downloads 678487 Immediate Life Support to a Wild Barn Owl (Tyto alba)
Authors: Bilge Kaan Tekelioglu, Mehmet Celik, Mahmut Ali Gokce, Ladine Celik, Yusuf Uzun
Abstract:
A male mature barn owl (Tyto alba) was brought to Cukurova University Ceyhan Veterinary Medicine Faculty at the beginning of January 2017. The bird was found at a local state elementary school’s garden where had been terribly damaged by metal wires. On the clinical examination, the animal was in shock and atonic position at arrival and seems to have feather problems and severe injuries. The ears, eyes, claws and wounded areas were checked and no signs of viral, microbial or ecto-parasitic infection were observed. The bird has been declared by U.S. wild life Office as endangered species. At first, the owl was kept in silent, warm and darkened cabinet against shock and warmed fluid replacement was started by % 5 dextrose solution per orally. On the second day, we started per oral forced feeding with chicken flesh meat dipped into the dextrose solution. On the third day, the bird was continued to be fed with fresh meat. At the fourth day, the owl was started to be fed with chicks during the next 3 days died by natural means which has been supplied by a local breeder. At the first 3 days 1 chick per day and the following days 2 chicks per day has been given per orally. The tenth day we started flying exercises in a small and non-windowed room safely. The saved owl was kept in this room for 10 more days. Finally, the owl was released at the habitation where it had been found injured. This study has one more time proved that, if you save one, you can save more. Wild life is in danger all over the world. Every living creature has right and deserves a chance to live.Keywords: wild life, barn owl, Tyto alba, rescue, life support, feeding
Procedia PDF Downloads 360486 Strategic Management Methods in Non-Profit Making Organization
Authors: P. Řehoř, D. Holátová, V. Doležalová
Abstract:
Paper deals with analysis of strategic management methods in non-profit making organization in the Czech Republic. Strategic management represents an aggregate of methods and approaches that can be applied for managing organizations - in this article the organizations which associate owners and keepers of non-state forest properties. Authors use these methods of strategic management: analysis of stakeholders, SWOT analysis and questionnaire inquiries. The questionnaire was distributed electronically via e-mail. In October 2013 we obtained data from a total of 84 questionnaires. Based on the results the authors recommend the using of confrontation strategy which improves the competitiveness of non-profit making organizations.Keywords: strategic management, non-profit making organization, strategy analysis, SWOT analysis, strategy, competitiveness
Procedia PDF Downloads 484485 Impact of Alkaline Activator Composition and Precursor Types on Properties and Durability of Alkali-Activated Cements Mortars
Authors: Sebastiano Candamano, Antonio Iorfida, Patrizia Frontera, Anastasia Macario, Fortunato Crea
Abstract:
Alkali-activated materials are promising binders obtained by an alkaline attack on fly-ashes, metakaolin, blast slag among others. In order to guarantee the highest ecological and cost efficiency, a proper selection of precursors and alkaline activators has to be carried out. These choices deeply affect the microstructure, chemistry and performances of this class of materials. Even if, in the last years, several researches have been focused on mix designs and curing conditions, the lack of exhaustive activation models, standardized mix design and curing conditions and an insufficient investigation on shrinkage behavior, efflorescence, additives and durability prevent them from being perceived as an effective and reliable alternative to Portland. The aim of this study is to develop alkali-activated cements mortars containing high amounts of industrial by-products and waste, such as ground granulated blast furnace slag (GGBFS) and ashes obtained from the combustion process of forest biomass in thermal power plants. In particular, the experimental campaign was performed in two steps. In the first step, research was focused on elucidating how the workability, mechanical properties and shrinkage behavior of produced mortars are affected by the type and fraction of each precursor as well as by the composition of the activator solutions. In order to investigate the microstructures and reaction products, SEM and diffractometric analyses have been carried out. In the second step, their durability in harsh environments has been evaluated. Mortars obtained using only GGBFS as binder showed mechanical properties development and shrinkage behavior strictly dependent on SiO2/Na2O molar ratio of the activator solutions. Compressive strengths were in the range of 40-60 MPa after 28 days of curing at ambient temperature. Mortars obtained by partial replacement of GGBFS with metakaolin and forest biomass ash showed lower compressive strengths (≈35 MPa) and shrinkage values when higher amount of ashes were used. By varying the activator solutions and binder composition, compressive strength up to 70 MPa associated with shrinkage values of about 4200 microstrains were measured. Durability tests were conducted to assess the acid and thermal resistance of the different mortars. They all showed good resistance in a solution of 5%wt of H2SO4 also after 60 days of immersion, while they showed a decrease of mechanical properties in the range of 60-90% when exposed to thermal cycles up to 700°C.Keywords: alkali activated cement, biomass ash, durability, shrinkage, slag
Procedia PDF Downloads 326484 Assessment the Implications of Regional Transport and Local Emission Sources for Mitigating Particulate Matter in Thailand
Authors: Ruchirek Ratchaburi, W. Kevin. Hicks, Christopher S. Malley, Lisa D. Emberson
Abstract:
Air pollution problems in Thailand have improved over the last few decades, but in some areas, concentrations of coarse particulate matter (PM₁₀) are above health and regulatory guidelines. It is, therefore, useful to investigate how PM₁₀ varies across Thailand, what conditions cause this variation, and how could PM₁₀ concentrations be reduced. This research uses data collected by the Thailand Pollution Control Department (PCD) from 17 monitoring sites, located across 12 provinces, and obtained between 2011 and 2015 to assess PM₁₀ concentrations and the conditions that lead to different levels of pollution. This is achieved through exploration of air mass pathways using trajectory analysis, used in conjunction with the monitoring data, to understand the contribution of different months, an hour of the day and source regions to annual PM₁₀ concentrations in Thailand. A focus is placed on locations that exceed the national standard for the protection of human health. The analysis shows how this approach can be used to explore the influence of biomass burning on annual average PM₁₀ concentration and the difference in air pollution conditions between Northern and Southern Thailand. The results demonstrate the substantial contribution that open biomass burning from agriculture and forest fires in Thailand and neighboring countries make annual average PM₁₀ concentrations. The analysis of PM₁₀ measurements at monitoring sites in Northern Thailand show that in general, high concentrations tend to occur in March and that these particularly high monthly concentrations make a substantial contribution to the overall annual average concentration. In 2011, a > 75% reduction in the extent of biomass burning in Northern Thailand and in neighboring countries resulted in a substantial reduction not only in the magnitude and frequency of peak PM₁₀ concentrations but also in annual average PM₁₀ concentrations at sites across Northern Thailand. In Southern Thailand, the annual average PM₁₀ concentrations for individual years between 2011 and 2015 did not exceed the human health standard at any site. The highest peak concentrations in Southern Thailand were much lower than for Northern Thailand for all sites. The peak concentrations at sites in Southern Thailand generally occurred between June and October and were associated with air mass back trajectories that spent a substantial proportion of time over the sea, Indonesia, Malaysia, and Thailand prior to arrival at the monitoring sites. The results show that emissions reductions from biomass burning and forest fires require action on national and international scales, in both Thailand and neighboring countries, such action could contribute to ensuring compliance with Thailand air quality standards.Keywords: annual average concentration, long-range transport, open biomass burning, particulate matter
Procedia PDF Downloads 184483 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas
Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad
Abstract:
A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture
Procedia PDF Downloads 399482 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island
Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird
Procedia PDF Downloads 365481 Fire Risk Information Harmonization for Transboundary Fire Events between Portugal and Spain
Authors: Domingos Viegas, Miguel Almeida, Carmen Rocha, Ilda Novo, Yolanda Luna
Abstract:
Forest fires along the more than 1200km of the Spanish-Portuguese border are more and more frequent, currently achieving around 2000 fire events per year. Some of these events develop to large international wildfire requiring concerted operations based on shared information between the two countries. The fire event of Valencia de Alcantara (2003) causing several fatalities and more than 13000ha burnt, is a reference example of these international events. Currently, Portugal and Spain have a specific cross-border cooperation protocol on wildfires response for a strip of about 30km (15 km for each side). It is recognized by public authorities the successfulness of this collaboration however it is also assumed that this cooperation should include more functionalities such as the development of a common risk information system for transboundary fire events. Since Portuguese and Spanish authorities use different approaches to determine the fire risk indexes inputs and different methodologies to assess the fire risk, sometimes the conjoint firefighting operations are jeopardized since the information is not harmonized and the understanding of the situation by the civil protection agents from both countries is not unique. Thus, a methodology aiming the harmonization of the fire risk calculation and perception by Portuguese and Spanish Civil protection authorities is hereby presented. The final results are presented as well. The fire risk index used in this work is the Canadian Fire Weather Index (FWI), which is based on meteorological data. The FWI is limited on its application as it does not take into account other important factors with great effect on the fire appearance and development. The combination of these factors is very complex since, besides the meteorology, it addresses several parameters of different topics, namely: sociology, topography, vegetation and soil cover. Therefore, the meaning of FWI values is different from region to region, according the specific characteristics of each region. In this work, a methodology for FWI calibration based on the number of fire occurrences and on the burnt area in the transboundary regions of Portugal and Spain, in order to assess the fire risk based on calibrated FWI values, is proposed. As previously mentioned, the cooperative firefighting operations require a common perception of the information shared. Therefore, a common classification of the fire risk for the fire events occurred in the transboundary strip is proposed with the objective of harmonizing this type of information. This work is integrated in the ECHO project SpitFire - Spanish-Portuguese Meteorological Information System for Transboundary Operations in Forest Fires, which aims the development of a web platform for the sharing of information and supporting decision tools to be used in international fire events involving Portugal and Spain.Keywords: data harmonization, FWI, international collaboration, transboundary wildfires
Procedia PDF Downloads 254480 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 97479 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 95478 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols
Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene
Abstract:
The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon
Procedia PDF Downloads 237477 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 14476 Architecture of Contemporary Museums Located in the Historic Center of Cracow: One City, One Architect, Three Projects
Authors: A. Brach
Abstract:
The architecture of modern museums in the historical center should refer to a place in a cultural, historical, urban and architectural sense, using adequate and contemporary forms of architecture. The research and architectural analysis of selected museums in Cracow were conducted to illustrate which elements were decisive for the choice of architectural form. The evaluation of selected objects took into the consideration the following aspects: continuation of the historical form, contemporary form referring to the place, the individual-author form omitting the cultural aspect of the place. The presented projects showed the compromise as positive solutions rejecting both the direct imitation or 'historical continuation' as well as an individual form focused on an abstract form. In order to carry out research and confirm the thesis, three designs of Assoc. Prof. Eng. Arch. Krzysztof Ingarden in the historic city of Cracow were selected. Despite being constructed in one city, the neighborhood and cultural contexts of the locations are completely different. The neighborhood of the historical Royal Road and gothic church with unique decorations from the Polish Art Nouveau, artist Stanislaw Wyspianski (Wyspianski Pavilion), the bend of the Vistula hosting the Japanese culture (Museum of Japanese Art and Technology Manggha) and finally the old area of a horse riding school from the Austrian Empire times (Malopolska Garden of Art). All three buildings are dedicated to the culture of Japan, Polish artist Stanislaw Wyspianski, contemporary achievements and the promotion of art at its widest sense. Important fact for this research is that there is one author of all presented projects.Keywords: adaptation of existing buildings, architecture in cracow, modern architecture, museums located in historic center
Procedia PDF Downloads 165475 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 157474 Response of Different Mulch Materials on Cowpea (Vigna unguiculata ) Growth and Yield in Tolon District
Authors: Adu Micheal Kwaku, Lamptey Shirley
Abstract:
Cowpea (Vigna unguiculata (L.) Walpis) is a major food grain legume in Ghana and plays a significant role in consumer diets. Drought in rain-fed crop production is known to cause substantial crop yield reduction due to their negative impacts on plant growth, physiology, and reproduction. There are various ways of reducing the effect of drought or addressing the problem of drought stress, including irrigation, breeding, and mulching. Among these three ways of reducing the effect of drought stress, the cheapest and quickest method is mulching. The broad objective of this project is to determine the influence of mulching on the performance of cowpea. The experiment was conducted at Planting for future garden located at Nyankpala Campus of the University for Development Studies (UDS), comprising five treatments (black plastic, rice hull, groundnut hull, dry grass mulch, and control). The treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replications. The result shows that black plastic mulch increased soil moisture by 1, 8, 15, and 24% compared to rice hull, groundnut hull, dry grass, and control, respectively. Increased soil moisture translated into black plastic mulch increasing grain yield by 8, 25, 39, and 46% compared to groundnut hull, rice hull, dry grass and control, respectively. However, black plastic mulch increased the cost of production, resulting in decreased net returns compared to the other treatment. This study recommends the use of rice and groundnut hull as mulching material to improve soil moisture, grain yield, and profit of smallholder cowpea farmers and also because they are almost free and available.Keywords: mulch, plastic mulch, cowpea, growth response
Procedia PDF Downloads 92473 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 433472 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 408471 Assessing the Financial Potential of an Agroforestry-Based Farming Practice in a Labor Scarce Subsistence Economy
Authors: Arun Dhakal, Rajesh Kumar Rai
Abstract:
Agroforestry is long practiced in Nepal as a means of subsistence livelihoods. Given its potential to climate change mitigation, this practice is being recommended as a climate-smart farming practice in the recent years. However, the financial attractiveness of this practice is not well-documented in a labor scarce economy such as Nepal. This study attempts to examine the financial suitability of an agroforestry-based farming practice in the present socio-economic context of Nepal where labor is in short supply. A total of 200 households were randomly selected for household surveys in Dhanusha district during April to July 2015. Two farming practices were found to be dominant in the study area: 1) conventional farming (field crops only) in which at least two field crops are annually grown, and 2) agroforestry-based farming (agroforest, home garden and field crops combined) practice (ABFP). The ABFP was found to be less labor intensive than the conventional farming (137 Man days/yr/ha vs 218 Man days/yr/ha). The ex-ante financial analysis indicated that both the farming practices generated positive NPVs (Net Present Values) and B/C (Benefit-Cost) ratios greater than one, indicating both are financially attractive farming enterprises under the base discount rate of 12%. However, the ABFP generated higher NPV and greater B/C ratio than the conventional farming, indicating the former was financially more attractive than the later. The sensitivity analysis showed that the conventional farming was more sensitive to change in labor wage rate than that of the ABFP. Up to the 24% discount rate, the ABFP generated higher NPV and in case of B/C ratio, the ratio was found greater for ABFP even in 50% discount rate.Keywords: agroforestry, benefit-cost analysis, conventional farming, net present value
Procedia PDF Downloads 134470 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand
Authors: Waraporn Wimuktalop
Abstract:
This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding
Procedia PDF Downloads 236469 Exploring Determinants of Farmers` Perceptions of Domestic Compost Production in Urban Agriculture
Authors: Chethika Gunasiri Wadumestrige Dona, Geetha Mohan, Kensuke Fukushi
Abstract:
Solid waste in urban areas, especially from organic materials like garden waste, food, and degradable sources, can create health and environmental problems if not managed properly. Urban agriculture has emerged as a potential solution in developing countries to mitigate these issues. It offers the possibility of low-carbon economies and knowledge and innovation dissemination. Domestic composting is a significant aspect of urban agriculture, and its success relies on the attitudes of those who practice it. This study examines the perspectives of 402 urban farmers in the Colombo District, Sri Lanka, regarding domestic compost production. It aims to identify the factors that influence these perspectives. The research found that urban farmers are willing to participate in domestic composting because they believe that it facilitates effective recycling of organic waste within their households. The study used an ordinal regression model to determine the factors that shape farmers' perspectives. Age, family size, and crop preferences are significant determinants of the adoption of domestic composting practices among urban farmers in the Colombo District. These findings highlight the importance of understanding and addressing farmers' attitudes in designing effective waste management strategies. In addition, the study also emphasizes the need for tailored interventions that align with farmers' beliefs and preferences to enhance the adoption and implementation of domestic composting practices in urban areas. The insights gained from this study contribute to the academic discourse and offer practical guidance for policymakers and urban planners seeking to promote sustainable waste management practices and support the adoption of urban agriculture in the broader context of urban development.Keywords: urban agriculture, domestic composting, farmers` perspectives, sustainable urban development
Procedia PDF Downloads 39468 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 128467 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 9466 Transformable Lightweight Structures for Short-term Stay
Authors: Anna Daskalaki, Andreas Ashikalis
Abstract:
This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.Keywords: lightweight structures, timber, transformable, tent
Procedia PDF Downloads 171465 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 500464 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 212463 Anti-Oxidant and Anti-Cancer Activity of Helix aspersa Aqueous Extract
Authors: Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe
Abstract:
Helix aspersa, 'the garden snail' is a big land snail widely found in the Mediterranean countries, it is one of the most consumed species in the west of Algeria. It is commonly used in zootherapy to purify blood and to treat cardiovascular diseases and liver problems. The aim of our study is to investigate, the antitumor activity of an aqueous extract from Helix aspersa prepared by the traditional method on Hs578T; a triple negative breast cancer cell line. Firstly, the free radical scavenging activity of H. aspersa extract was assessed by measuring its capability for scavenging the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), as well as its ability to reduce ferric ion by the FRAP assay (ferric reducing ability). The cytotoxic effect of H. aspersa extract against Hs578T cells was evaluated by the MTT test (3-(4,5- dimethylthiazl-2-yl)-2,5- diphenyltetrazolium bromide)) while the mode of cell death induced by the extract has been determined by fluorescence microscopy using acredine orange/ethidium bromide (AO/EB) probe. The level of TNFα has also measured in cell medium by ELISA method. The results suggest that H. aspersa extract has an antioxidant activity, especially at high concentrations, it can reduce DPPH radical and ferric ion. The MTT test shows that H. aspersa extract has a great cytotoxic effect against breast cancer cells, the IC50 value correspond of the dilution 1% of the crude extract. Moreover, the AO/EB staining shows that TNFα induced necrosis is the main form of cell death induced by the extract. In conclusion, the present study may open new perspectives in the search for new natural anticancer drugs.Keywords: breast cancer, Helix aspersa, Hs578t cell line, necrosis
Procedia PDF Downloads 423