Search results for: dry mass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3498

Search results for: dry mass

2898 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite

Authors: Danuta Barnat-Hunek

Abstract:

The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.

Keywords: hydrophobisation, mortars, salt crystallization, frost resistance

Procedia PDF Downloads 210
2897 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 405
2896 A Theoretical Model for a Humidification Dehumidification (HD) Solar Desalination Unit

Authors: Yasser El-Henawy, M. Abd El-Kader, Gamal H. Moustafa

Abstract:

A theoretical study of a humidification dehumidification solar desalination unit has been carried out to increase understanding the effect of weather conditions on the unit productivity. A humidification-dehumidification (HD) solar desalination unit has been designed to provide fresh water for population in remote arid areas. It consists of solar water collector and air collector; to provide the hot water and air to the desalination chamber. The desalination chamber is divided into humidification and dehumidification towers. The circulation of air between the two towers is maintained by the forced convection. A mathematical model has been formulated, in which the thermodynamic relations were used to study the flow, heat and mass transfer inside the humidifier and dehumidifier. The present technique is performed in order to increase the unit performance. Heat and mass balance has been done and a set of governing equations has been solved using the finite difference technique. The unit productivity has been calculated along the working day during the summer and winter sessions and has compared with the available experimental results. The average accumulative productivity of the system in winter has been ranged between 2.5 to 4 kg/m2.day, while the average summer productivity has been found between 8 to 12 kg/m2 day.

Keywords: solar desalination, solar collector, humidification and dehumidification, simulation, finite difference, water productivity

Procedia PDF Downloads 412
2895 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 291
2894 Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens

Authors: Ayman El Behiry, Rasha Nabil Zahran, Reda Tarabees, Eman Marzouk, Musaad Al-Dubaib

Abstract:

Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.

Keywords: identification, mastitis pathogens, mass spectral, phenotypical

Procedia PDF Downloads 333
2893 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 279
2892 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 302
2891 Health Impacts of Size Segregated Particulate Matter and Black Carbon in Industrial Area of Firozabad

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, Chronic obstructive pulmonary disease (COPD), and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring (mass as well as a number) of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban, and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM₁₀ (223.73 g/m-³), PM₅.₀ (44.955 g/m-³), PM₂.₅ (59.275 g/m-³), PM₁.₀ (33.02 g/m-³), PM₀.₅ (2.05 g/m-³), and PM₀.₂₅ (2.99 g/m- ³). In number mode, PM concentration was found as PM₁₀ (27.46g/m-³), PM₅.₀ (233.48g/m-³), PM₂.₅ (646.61g/m-³), PM₁.₀ (1134.94 g/m-³), PM₀.₅ (14056.04g/m-³), and PM₀.₂₅ (182906.4 g/m-³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning while NO2 was highest at the rural sites. The concentrations of PM₁₀ and PM₂.₅ exceeded the NAAQS and WHO guidelines. The sensitive, exposed population may be at risk of developing health-related problems from exposure to size-segregated PM and BC.

Keywords: particulate matter, black carbon, NO2, health risk

Procedia PDF Downloads 38
2890 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane

Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath

Abstract:

Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.

Keywords: association, desalination, electrolytes, promoter

Procedia PDF Downloads 245
2889 Development of Biotechnological Emulsion Based on Bullfrog (Rana catesbeiana Shaw) Oil: A Preliminary Study

Authors: Lourena M. Veríssimo, Lucas A. Machado, Renata Rutckeviski, Francisco H. Xavier Júnior, Éverton N. Alencar, Andreza R. V. Morais, Teresa R. F. Dantas, Christian M. Oliveira, Arnóbio A. Silva Júnior, Eryvaldo S. T. Egito

Abstract:

This study aimed to obtain emulsion systems based on bullfrog oil (BO). The BO was extracted at 80ºC and analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). The critical Hydrophilic-Lipophilic Balance (HLBc) Assay of the BO was performed through BO, Tween® 20, Span® 80 and deionized water mixtures using an Ultra-Turrax® and determined using dynamic light scattering, pH, electrical conductivity and creaming rate. Then, a pseudoternary phase diagram (PPD) was constructed by water titration. The GC/MS analysis of BO suggested Methyl Oleate (9.26%) as major compound. The HLBc was 12.1, wherein the correspondent emulsion showed a pH of 4.83±1.29, electrical conductivity of 103.65 µS, creaming rate of 2.51±0.54%, droplet size of 207.07±8.31 nm and polydispersity index of 0.212±0.005. The PPD showed different formulations characterized as O/W emulsions. Thus, the PPD proved to be a useful tool to produce BO emulsions, in which their constituents may vary within the range of the desired system.

Keywords: bullfrog (Rana catesbeiana Shaw) oil, emulsion production, hydrophilic-lipophilic balance, gas chromatography/mass spectrometry analysis

Procedia PDF Downloads 507
2888 Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustors for Methane, Propane and Hydrogen

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

The carbon footprint of the aviation sector in total measured 3.8% in 2017, and it is expected to triple by 2050. New combustion approaches and fuel types are necessary to prevent this. This paper will focus on using propane, methane, and hydrogen as fuel replacements for kerosene and implement a trapped vortex combustor design to increase efficiency. Reacting simulations were conducted for axisymmetric trapped vortex combustor to investigate the static pressure drop, combustion efficiency and pattern factor for various cavity aspect ratios for 0.3, 0.6 and 1 and air mass flow rates for 14 m/s, 28 m/s and 42 m/s. Propane, methane and hydrogen are used as alternative fuels. The combustion model was anchored based on swirl flame configuration with an emphasis on high fidelity of boundary conditions with favorable results of eddy dissipation model implementation. Reynolds Averaged Navier Stokes (RANS) k-ε model turbulence model for the validation effort was used for turbulence modelling. A grid independence study was conducted for the three-dimensional model to reduce computational time. Preliminary results for 24 m/s air mass flow rate provided a close temperature profile inside the cavity relative to the experimental study. The investigation will be carried out on the effect of air mass flow rates and cavity aspect ratio on the combustion efficiency, pattern factor and static pressure drop in the combustor. A comparison study among pure methane, propane and hydrogen will be conducted to investigate their suitability for trapped vortex combustors and conclude their advantages and disadvantages as a fuel replacement. Therefore, the study will be one of the milestones to achieving 2050 zero carbon emissions or reducing carbon emissions.

Keywords: computational fluid dynamics, aerodynamic, aerospace, propulsion, trapped vortex combustor

Procedia PDF Downloads 90
2887 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna

Abstract:

The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer.

Keywords: adsorption efficiency, clayey pellet, metal ions, waste printing developer

Procedia PDF Downloads 301
2886 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology

Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando

Abstract:

Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.

Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry

Procedia PDF Downloads 151
2885 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 310
2884 Evaluation of Antioxidant Activities of Rice Paddy Herb (Limnophila aromatica (Lam.) Merr.)

Authors: Rutanachai Thaipratum

Abstract:

Free radicals are atoms or molecules with unpaired electrons. Many diseases are caused by free radicals. Normally, free radical formation is controlled naturally by various beneficial compounds known as antioxidants. Several analytical methods have been used for qualitative and quantitative determination of antioxidants, and each has its own specificity. This project aimed to evaluate antioxidant activity of ethanolic and aqueous extracts from the rice paddy herb (Limnophila aromatica (Lam.) Merr.) measured by DPPH and Hydroxyl radical scavenging method. The results showed that averaged antioxidant activity measured in ethanolic extract (µmol Ascorbic acid equivalent/g fresh mass) were 67.09± 4.99 and 15.55±4.82 as determined by DPPH and Hydroxyl radical scavenging activity assays, respectively. Averaged antioxidant activity measured in aqueous extract (µmol Ascorbic acid equivalent/g fresh mass) were 21.08±1.25 and 10.14±3.94 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively.

Keywords: free radical, antioxidant, rice paddy herb, Limnophila aromatica (Lam.) Merr.

Procedia PDF Downloads 348
2883 Pancreatic Adenocarcinoma Correctly Diagnosed by EUS but nor CT or MRI

Authors: Yousef Reda

Abstract:

Pancreatic cancer has an overall dismal prognosis. CT, MRI and Endoscopic Ultrasound are most often used to establish the diagnosis. We present a case of a patient found on abdominal CT and MRI to have an 8 mm cystic lesion within the head of the pancreas which was thought to be a benign intraductal papillary mucinous neoplasm (IPMN). Further evaluation by EUS demonstrated a 1 cm predominantly solid mass that was proven to be an adenocarcinoma by EUS-guided FNA. The patient underwent a Whipple procedure. The final pathology confirmed a 1 cm pT1 N0 pancreatic ductal adenocarcinoma. Case: A 63-year-old male presented with left upper quadrant pain and an abdominal CT demonstrated an 8 mm lesion within the head of the pancreas that was thought to represent a side branch IPMN. An MRI also showed similar findings. Four months later due to ongoing symptoms an EUS was performed to re-evaluate the pancreatic lesion. EUS revealed a predominantly solid hypoechoic, homogeneous mass measuring 12 mm x 9 mm. EUS-guided FNA was performed and was positive for adenocarcinoma. The patient underwent a Whipple procedure that confirmed it to be a ductal adenocarcinoma, pT1N0. The solid mass was noted to be adjacent to a cystic dilation with no papillary architecture and scant epithelium. The differential diagnosis resided between cystic degeneration of a primary pancreatic adenocarcinoma versus malignant degeneration within a side-branch IPMN. Discussion: The reported sensitivity of CT for pancreatic cancer is approximately 90%. For pancreatic tumors, less than 3 cm the sensitivity of CT is reduced ranging from 67-77%. MRI does not significantly improve overall detection rates compared to CT. EUS, however is superior to CT in the detection of pancreatic cancer, in particular among lesions smaller than 3 cm. EUS also outperforms CT and MRI in distinguishing neoplastic from non-neoplastic cysts. In this case, both MRI and CT failed to detect a small pancreatic adenocarcinoma. The addition of EUS and FNA to abdominal imaging can increase overall accuracy for the diagnosis of neoplastic pancreatic lesions. It may be prudent that when small lesions although appearing as a benign IPMN should further be evaluated by EUS as this would lead to potentially identifying earlier stage pancreatic cancers and improve survival in a disease which has a dismal prognosis.

Keywords: IPMN, MRI, EUS, CT

Procedia PDF Downloads 263
2882 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution

Authors: Jie Ren, Siyao Guo

Abstract:

Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.

Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid

Procedia PDF Downloads 121
2881 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 213
2880 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 308
2879 Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion

Authors: M. Said Ahmed, M. Lebrini, J. Pellé, S. Rioual, B. Lescop, C. Roos

Abstract:

The corrosion behavior of copper exposed in a marine atmosphere polluted and unpolluted by gases, mainly hydrogen sulphide (H2S), from the decomposition of Sargassum algae was studied using the mass loss method and electrochemical measurements. MEB/EDX and XRD were also used for the observation of morphology and surface analysis. To study the impact of this on copper corrosion, four sites more or less impacted by Sargassum algae strandings were selected. The samples were exposed for up to six months. The mass loss results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least impacted site after three months of exposure, implying that the presence of Sargassum algae caused an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae, we obtained mainly Cu2O and Cu2Cl(OH)3. Whereas in the atmosphere with Sargassum algae, CuS product is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated.

Keywords: atmospheric-corrosion, sargassum algae, copper, electrochemical techniques, SEM/EDX and XRD

Procedia PDF Downloads 118
2878 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 73
2877 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions

Procedia PDF Downloads 440
2876 Consumption of Animal and Vegetable Protein on Muscle Power in Road Cyclists from 18 to 20 Years in Bogota, Colombia

Authors: Oscar Rubiano, Oscar Ortiz, Natalia Morales, Lida Alfonso, Johana Alvarado, Adriana Gutierrez, Daniel Botero

Abstract:

Athletes who usually use protein supplements, are those who practice strength and power sports, whose goal is to achieve a large muscle mass. However, it has also been explored in sports or endurance activities such as cycling, and where despite requiring high power, prominent muscle development can impede good competitive performance due to the determinant of body mass for good performance of the athlete body. This research shows, the effect with protein supplements establishes a protein - muscle mass ratio, although in a lesser proportion the relationship between protein types and muscle power. Thus, we intend to explore as a first approximation, the behavior of muscle power in lower limbs after the intake of two protein supplements from different sources. The aim of the study was to describe the behavior of muscle power in lower limbs after the consumption of animal protein (AP) and vegetable protein (VP) in four route cyclists from 18 to 20 years of the Bogota cycling league. The methodological design of this study is quantitative, with a non-probabilistic sampling, based on a pre-experimental model. The jumping power was evaluated before and after the intervention by means of the squat jump test (SJ), Counter movement jump (CMJ) and Abalacov (AB). Cyclists consumed a drink with whey protein and a soy isolate after training four times a week for three months. The amount of protein in each cyclist, was calculated according to body weight (0.5 g / kg of muscle mass). The results show that subjects who consumed PV improved muscle strength and landing strength. In contrast, the power and landing force decreased for subjects who consumed PA. For the group that consumed PV, the increase was positive at 164.26 watts, 135.70 watts and 33.96 watts for the AB, SJ and CMJ jumps respectively. While for PA, the differences of the medians were negative at -32.29 watts, -82.79 watts and -143.86 watts for the AB, SJ and CMJ jumps respectively. The differences of the medians in the AB jump were positive for both the PV (121.61 Newton) and PA (454.34 Newton) cases, however, the difference was greater for PA. For the SJ jump, the difference for the PA cases was 371.52 Newton, while for the PV cases the difference was negative -448.56 Newton, so the difference was greater in the SJ jump for PA. In jump CMJ, the differences of the medians were negative for the cases of PA and PV, being -7.05 for PA and - 958.2 for PV. So the difference was greater for PA. The conclusion of this study shows that serum protein supplementation showed no improvement in muscle power in the lower limbs of the cyclists studied, which could suggest that whey protein does not have a beneficial effect on performance in terms of power, either, showed an impact on body composition. In contrast, supplementation with soy isolate showed positive effects on muscle power, body.

Keywords: animal protein (AP), muscle power, supplements, vegetable protein (VP)

Procedia PDF Downloads 177
2875 Impact of Hormone Replacement Therapy on Body Composition Analysis of Women during Perimenopause: A Framework for Action

Authors: Varsha Chorsiya, Pooja Aneja, Dhananjay Kaushik, Abhinav Yadav

Abstract:

Intoduction: Women’s Health Initiatives (WHI) focuses on defining the risks and benefits of strategies that could potentially reduce the incidence of obesity, heart disease, breast cancer and colorectal cancer, and fractures in menopause women. The utility of the present research work determines to find the role of Hormone Replacement Therapy (HRT) in changing the different component of body composition during perimenopause period. Methods: A comparative cross-sectional study included 30 subjects, aged between 40 and 50 years which were assigned into 2 groups i.e. 15 subjects in HRT (Group A) and 15 subjects in non-HRT (Group B). The subjects were taken from the hospitals and clinics of Faridabad undergoing HRT in supervision of the consultant gynecologist. The informed consents were signed before including the participants in the study. The body composition and lipid profile were evaluated for all the subjects. Result and Discussion: The BMI, body density, percent body fats and fat mass in both groups showed statistically significant differences i.e. p < 0.05. Our study did not reveal any statistically significant difference between non-HRT and HRT for lipid profile composition of HDL, LDL, VLDL, ratio, triglycerides and total cholesterol although these indicators (LDL, VLDL, ratio, triglycerides and total cholesterol) showed difference clinically with a higher mean values for non-HRT as compared to HRT group. The mean value for HDL was higher for HRT group in contrast to non-HRT group. The result clearly showed that HRT group has a good lipid profile composition. Conclusion: In conclusion, our data show that HRT has statistically significant role in determining BMI, fat percent mass and fat mass. The lipid profile including LDL, HDL, VLDL, ratio, triglycerides and total cholesterol found to be clinically better in HRT group as compared to the non-HRT group. The rationale for non-significant lipid profile probably lie in the fact that hormonal changes need a particular time period and might become significant in post-menopausal period.

Keywords: body composition, hormone replacement therapy, perimenopause, women health

Procedia PDF Downloads 293
2874 Supplementation of Fig Fruit (Ficus carica linn.) Extract in Extender on Sperm Motility and Viability of Native Chicken Semen after Cooling

Authors: N. Isnaini, S. Wahjuningsih

Abstract:

Fig fruit is the fruit of a tropical plant with content of flavanoids, vitamins A, C, and E which are antioxidants that effectively prevent and neutralize free radicals. This study was conducted to evaluate the supplementation of fig fruit extract in a physiological NaCl-based diluent on sperm motility and viability of native chicken semen after cooling. Semen was collected from 4 male mature chocks using massage method. Fresh semen evaluated for colour, pH, volume, concentration, mass motility, individual motility, life sperm and sperm abnormality. Semen was diluted with physiological NaCl-based extender supplemented with different levels of fig fruit extract (0, 10, 20 and 30 %) v/v with the ratio of 1 semen: 4 diluter. Semen used had mass motility of 2+ and motility of 70%. Immediately after dilution semen was stored in 3-5 °C and sperm motility and viability percentage were observed at 0, 12 and 24 h. The obtained data were analyze with Analysis of Variant (ANOVA) and Least Significant Difference were determined. The experiment was designed using completely random design (4 treatments and 10 replications). The results showed that the level of fig fruit extract had very significant effect (P < 0,01) on sperm motility and viability percentage in 0, 12 and 24 h of cooling. It can be concluded that the best fig fruit extract level for resulting optimal sperm motility and viability was 10%.

Keywords: chock, antioxidant, fig fruit extract, sperm

Procedia PDF Downloads 306
2873 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia

Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono

Abstract:

Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.

Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length

Procedia PDF Downloads 214
2872 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 330
2871 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 106
2870 Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry

Authors: Arifur Rahman, Ardeshir Amirkhani, Honghua Hu, Mark Molloy, Karen Vickery

Abstract:

Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections.

Keywords: bacterial biofilms, CDC bioreactor, S. aureus, mass spectrometry, TMT

Procedia PDF Downloads 171
2869 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 146