Search results for: convolutional long short-term memory
6703 Book Exchange System with a Hybrid Recommendation Engine
Authors: Nilki Upathissa, Torin Wirasinghe
Abstract:
This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network
Procedia PDF Downloads 946702 To Investigate a Discharge Planning Connect with Long Term Care 2.0 Program in a Medical Center in Taiwan
Authors: Chan Hui-Ya, Ding Shin-Tan
Abstract:
Background and Aim: The discharge planning is considered helpful to reduce the hospital length of stay and readmission rate, and then increased satisfaction with healthcare for patients and professionals. In order to decrease the waiting time of long-term care and boost the care quality of patients after discharge from the hospital, the Ministry of Health and Welfare department in Taiwan initiates a program “discharge planning connects with long-term care 2.0 services” in 2017. The purpose of this study is to investigate the outcome of the pilot of this program in a medical center. Methods: By purpose sampling, the study chose five wards in a medical center as pilot units. The researchers compared the beds of service, the numbers of cases which were transferred to the long-term care center and transferred rates per month between the pilot units and the other units, and analyze the basic data, the long-term care service needs and the approval service items of cases transfer to the long-term care center in pilot units. Results: From June to September 2017, a total of 92 referrals were made, and 51 patients were enrolled into the pilot program. There is a significant difference of transferring rate between the pilot units and the other units (χ = 702.6683, p < 0.001). Only 20 cases (39.2% success rate) were approved to accept the parts of service items of long-term care in the pilot units. The most approval item was respite care service (n = 13; 65%), while it was third at needs ranking of service lists during linking services process. Among the reasons of patients who cancelled the request, 38.71% reasons were related to the services which could not match the patients’ needs and expectation. Conclusion: The results indicate there is a requirement to modify the long-term care services to fit the needs of cases. The researchers suggest estimating the potential cases by screening data from hospital informatics systems and to hire more case manager according the service time of potential cases. Meanwhile, the strategies shortened the assessment scale and authorized hospital case managers to approve some items of long-term care should be considered.Keywords: discharge planning, long-term care, case manager, patient care
Procedia PDF Downloads 2866701 The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints
Authors: Hicham Benamirouche, Oum Elkheir Moussi
Abstract:
The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.Keywords: natural gas exports, elasticity, ARDL bounds testing, break points, Algeria
Procedia PDF Downloads 1996700 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1006699 Fengqiao: An Ongoing Experiment with 'UrbanMemory' Theory in an Ancient Town and ItsDesign Experience
Authors: Yibei Ye, Lei Xu, Zhenyu Cao
Abstract:
Ancient town is a unique carrier of urban culture, maintaining the core culture of a region and continuing the urban context. Fengqiao, a nearly 2000-year-old town was on the brink of dilapidation in the past few decades. The town faced such problems as poor construction quality, environmental degeneration, inadequate open space, cultural characteristics and industry vitality. Therefore, the research upholds the principle of ‘organic renewal’ and puts forward three practical updated strategies which are ‘Repair Old as Ever,' ‘Activate Function’ and ‘Fill in with The New’. Also as a participant in updating the design, the author aims to ‘keep the memory of the history and see the development of the present’ as the goal of updating the design and regards the process of town renewal as the experimental venue for realizing this purpose. The research will sum up innovations on the designing process and the engineering progress in the past two years, and find out the innovation experiment and the effect of its implementation on the methodological level of the organic renewal design in Fengqiao ancient town. From here, we can also enjoy the very characteristic development trend presented by China in the design practice of the organic renewal in the ancient town.Keywords: characteristic town, Fengqiao, organic renewal, urban memory
Procedia PDF Downloads 1596698 Neuroprotective Effect of Hypericum Perforatum against Neurotoxicity and Alzheimer's Disease (Experimental Study in Mice)
Authors: Khayra Zerrouki, Noureddine Djebli, Esra Eroglu, Afife Mat, Ozhan Gul
Abstract:
Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. Alzheimer’s disease (AD) is a complex, multifactorial, heterogeneous mental illness, which is characterized by an age-dependent loss of memory and an impairment of multiple cognitive functions, but this 10 last years it concerns the population most and most young. Hypericum perforatum has traditionally been used as an external anti-inflammatory and healing remedy for the treatment of swellings, wounds and burns, diseases of the alimentary tract and psychological disorders. It is currently of great interest due to new and important therapeutic applications. In this study, the chemical composition of methanolic extract of Hypericum perforatum (HPM) was analysed by using high performance liquid chromatography – diode array detector (HPLC-DAD). The in vitro antioxidant activity of HPM was evaluated by using several antioxidant tests. HSM exhibits inhibitory capacity against posphatidylcholine liposome peroxidation, induced with iron and ascorbic acid, scavenge DPPH and superoxide radicals and act as reductants. The cytotoxic activity of HSM was also determined by using MTT cell viability assay on HeLa and NRK-52E cell lines. The in vivo activity studies in Swiss mice were determined by using behavioral, memory tests and histological study. According to tests results HPM that may be relevant to the treatment of cognitive disorders. The results of chemical analysis showed a hight level of hyperforin and quercitin that had an important antioxidant activity proved in vitro with the DPPH, anti LPO and SOD; this antioxidant activity was confirmed in vivo after the non-toxic results by means of improvement in behavioral and memory than the reducing shrunken in pyramidal cells of mice brains.Keywords: AlCl3, alzheimer, mice, neuroprotective, neurotoxicity, phytotherapy
Procedia PDF Downloads 4986697 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1036696 Revealing Corruption through Strategic Narration in Mandla Langa’s Memory of Stones (2000)
Authors: Dzunisani Sibuyi
Abstract:
This article demonstrates how corruption is revealed in Mandla Langa’s Memory of Stones (2000) through the deployment of narrational strategies by applying narrative theories by Gerard Genette’s Narrative Discourse and Narrative Discourse Revisited, as well as Mikhail Bakhtin’s Dialogic Imagination to the text. This is accomplished by analysing Langa’s use of extradiegetic-heterodiegetic and intradiegetic-homodiegetic narrational strategies respectively employed by the anonymous narrator and character narrator Mpanza. The narration provided by these narrators is multi-voiced in its approach to the events depicting corruption from various completing and explanatory perspectives. In addition, Langa also employs narrative techniques of narrating times such as simultaneous, subsequent, and interpolated narration to highlight corruption taking place, which is highlighted by situating the story in its presentness moments coinciding with the corruption action. As a result, by emphasising the events portraying the plight of the main characters and their struggle to resist and defeat corrupt leaders, the narration strategically reveals corruption.Keywords: narrational strategies, narrating voice, dialogism, corruption, Gérard Genette, Mandla Langa, Mikhail Bakhtin, time(s) of the narration
Procedia PDF Downloads 1036695 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 776694 The Long-Run Impact of Financial Development on Greenhouse Gas Emissions in India: An Application of Regime Shift Based Cointegration Approach
Authors: Javaid Ahmad Dar, Mohammad Asif
Abstract:
The present study investigates the long-run impact of financial development, energy consumption and economic growth on greenhouse gas emissions for India, in presence of endogenous structural breaks, over a period of 1971-2013. Autoregressive distributed lag bounds testing procedure and Hatemi-J threshold cointegration technique have been used to test the variables for cointegration. ARDL bounds test did not confirm any cointegrating relationship between the variables. The threshold cointegration test establishes the presence of long-run impact of financial development, energy use and economic growth on greenhouse gas emissions in India. The results reveal that the long-run relationship between the variables has witnessed two regime shifts, in 1978 and 2002. The empirical evidence shows that financial sector development and energy consumption in India degrade environment. Unlike previous studies, this paper finds no statistical evidence of long-run relationship between economic growth and environmental deterioration. The study also challenges the existence of environmental Kuznets curve in India.Keywords: cointegration, financial development, global warming, greenhouse gas emissions, regime shift, unit root
Procedia PDF Downloads 3806693 Understanding Perceptual Differences and Preferences of Urban Color in New Taipei City
Authors: Yuheng Tao
Abstract:
Rapid urbanization has brought the consequences of incompatible and excessive homogeneity of urban system, and urban color planning has become one of the most effective ways to restore the characteristics of cities. Among the many urban color design research, the establishment of urban theme colors has rarely been discussed. This study took the "New Taipei City Environmental Aesthetic Color” project as a research case and conducted mixed-method research that included expert interviews and quantitative survey data. This study introduces how theme colors were selected by the experts and investigates public’s perception and preference of the selected theme colors. Several findings include 1) urban memory plays a significant role in determining urban theme colors; 2) When establishing urban theme colors, areas/cities with relatively weak urban memory are given priority to be defined; 3) Urban theme colors that imply cultural attributes are more widely accepted by the public; 4) A representative city theme color helps conserve culture rather than guiding innovation. In addition, this research rearranges the urban color symbolism and specific content of urban theme colors and provides a more scientific urban theme color selection scheme for urban planners.Keywords: urban theme color, urban color attribute, public perception, public preferences
Procedia PDF Downloads 1586692 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices
Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar
Abstract:
Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell
Procedia PDF Downloads 3926691 Development of an Elastic Functionally Graded Interphase Model for the Micromechanics Response of Composites
Authors: Trevor Sabiston, Mohsen Mohammadi, Mohammed Cherkaoui, Kaan Inal
Abstract:
A new micromechanics framework is developed for long fibre reinforced composites using a single fibre surrounded by a functionally graded interphase and matrix as a representative unit cell. The unit cell is formulated to represent any number of aligned fibres by a single fibre. Using this model the elastic response of long fibre composites is predicted in all directions. The model is calibrated to experimental results and shows very good agreement in the elastic regime. The differences between the proposed model and existing models are discussed.Keywords: computational mechanics, functionally graded interphase, long fibre composites, micromechanics
Procedia PDF Downloads 3196690 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field
Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian
Abstract:
Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering
Procedia PDF Downloads 1776689 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 286688 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures
Authors: Mariem Saied, Jens Gustedt, Gilles Muller
Abstract:
We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments
Procedia PDF Downloads 1276687 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems
Authors: Jalil Boudjadar
Abstract:
Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis
Procedia PDF Downloads 1076686 Subjective Time as a Marker of the Present Consciousness
Authors: Anastasiya Paltarzhitskaya
Abstract:
Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.Keywords: temporal consciousness, time perception, memory, present
Procedia PDF Downloads 766685 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors
Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot
Abstract:
Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases
Procedia PDF Downloads 1526684 A Comparitive Study of the Effect of Stress on the Cognitive Parameters in Women with Increased Body Mass Index before and after Menopause
Authors: Ramesh Bhat, Ammu Somanath, A. K. Nayanatara
Abstract:
Background: The increasing prevalence of overweight and obesity is a critical public health problem for women. The negative effect of stress on memory and cognitive functions has been widely explored for decades in numerous research projects using a wide range of methodology. Deterioration of memory and other brain functions are hallmarks of Alzheimer’s disease. Estrogen fluctuations and withdrawal have myriad direct effects on the central nervous system that have the potential to influence cognitive functions. Aim: The present study aims to compare the effect of stress on the cognitive functions in overweight/obese women before and after menopause. Material and Methods: A total of 142 female subjects constituting women before menopause between the age group of 18–44 years and women after menopause between the age group of 45–60 years were included in the sample. Participants were categorized into overweight/obese groups based on the body mass index. The Perceived Stress Scale (PSS) the major tool was used for measuring the perception of stress. Based on the stress scale measurement each group was classified into with stress and without stress. Addenbrooke’s cognitive Examination-III was used for measuring the cognitive functions. Results: Premenopausal women with stress showed a significant (P<0.05) decrease in the cognitive parameters such as attention and orientation Fluency, language and visuospatial ability. Memory did not show any significant change in this group. Whereas, in the postmenopausal stressed women all the cognitive functions except fluency showed a significant (P<0.05) decrease after menopause stressed group. Conclusion: Stress is a significant factor on the cognitive functions of obese and overweight women before and after menopause. Practice of Yoga, Encouragement in activities like gardening, embroidery, games and relaxation techniques should be recommended to prevent stress. Insights into the neurobiology before and after menopause can be gained from future studies examining the effect on the HPA axis in relation to cognition and stress.Keywords: cognition, stress, premenopausal, body mass index
Procedia PDF Downloads 3056683 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver
Authors: Shreeyam, Ranjan Kumar Sah, Shivangi
Abstract:
Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks
Procedia PDF Downloads 1216682 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 2926681 Analysis of Long-term Results After External Dacryocystorhinostomy Surgery in Patients Suffered from Diabetes Mellitus
Authors: N. Musayeva, N. Rustamova, N. Bagirov, S. Ibadov
Abstract:
Purpose: to analyze the long-term results of external dacryocystorhinostomy (DCR), which remains the preferred primary procedure in the surgical treatment of lacrimal duct obstruction in chronic dacryocystitis. Methodology: long-term results of external DCR (after 3 years) performed on 90 patients (90 eyes) with chronic dacryocystitis from 2018 to 2020 were evaluated. The Azerbaijan National Center of Ophthalmology, named after acad. Zarifa Aliyeva. 15 of the patients were men, 75 – women. The average age was 45±3.2 years. Surgical operations were performed under local anesthesia. All patients suffered from diabetes mellitus for more than 3 years. All patients underwent external DCR and silicone drainage (tube) was implanted. In the postoperative period (after 3 years), lacrimation, purulent discharge, and the condition of the scar at the operation site were assessed. Results: All patients were under observation for more than 18 months. In general, the effectiveness of the surgical operation was 93.34%. Recurrence of disease was observed in 6 patients and in 3 patients (3.33%), the scar at the site of the operation was rough (non-cosmetic). In 3 patients (3.33%) – the surgically formed anastomosis between the lacrimal sac and the nasal bone was obstructed by scar tissue. These patients were reoperated by trans canalicular laser DCR. Conclusion: Despite the long-term (more than a hundred years) use of external DCR, it remains one of the primary techniques in the surgery of chronic dacryocystitis. Due to the high success rate and good long-term results of DCR in the treatment of chronic dacryocystitis in patients suffering from diabetes mellitus, we recommend external DCR for this group of patients.Keywords: chronic dacryocystitis, diabetes mellitus, external dacryocystorhinostomy, long-term results
Procedia PDF Downloads 656680 Wayfinding Strategies in an Unfamiliar Homogenous Environment
Authors: Ahemd Sameer, Braj Bhushan
Abstract:
The objective of our study was to compare wayfinding strategies to remember route while navigation in an unfamiliar homogenous environment. Two videos developed using free ware Trimble Sketchup© each having nine identical turns (3 right, 3 left, 3 straight) with no distinguishing feature at any turn. Thirt-two male post-graduate students of IIT Kanpur participated in the study. The experiment was conducted in three phases. In the first phase participant generated a list of personally known items to be used as landmarks. In the second phase participant saw the first video and was required to remember the sequence of turns. In the second video participant was required to imagine a landmark from the list generated in the first phase at each turn and associate the turn with it. In both the task the participant was asked to recall the sequence of turns as it appeared in the video. In the third phase, which was 20 minutes after the second phase, participants again recalled the sequence of turns. Results showed that performance in the first condition i.e. without use of landmarks was better than imaginary landmark condition. The difference, however, became significant when the participant were tested again about 30 minutes later though performance was still better in no-landmark condition. The finding is surprising given the past research in memory and is explained in terms of cognitive factors such as mental workload.Keywords: Wayfinding, Landmark, Homogenous Environment, Memory
Procedia PDF Downloads 4576679 Effect of the Birth Order and Arrival of Younger Siblings on the Development of a Child: Evidence from India
Authors: Swati Srivastava, Ashish Kumar Upadhyay
Abstract:
Using longitudinal data from three waves of Young Lives Study and Ordinary Least Square methods, study has investigated the effect of birth order and arrival of younger siblings on child development in India. Study used child’s height for age z-score, weight for age z-score, BMI for age z-score, Peabody Picture Vocabulary Test (PPVT-Score)c, maths score, Early Grade Reading Assessment Test (ERGA) score, and memory score to measure the physical and cognitive development of child during wave-3. Findings suggest that having a high birth order is detrimental for child development and the gap between adjacent siblings is larger for children late in the birth sequences than early in the birth sequences. Study also reported that not only older siblings but arrival of younger siblings before assessment of test also reduces the development of a child. The effects become stronger in case of female children than male children.Keywords: height for age z-score, weight for age z-score, BMI for z-score, PPVT score, math score, EGRA score, memory score, birth order, siblings, Young Lives Study, India
Procedia PDF Downloads 3356678 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending
Authors: Farheen Akram
Abstract:
Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.Keywords: cash compensation, LTIs, board composition, R&D spending
Procedia PDF Downloads 1926677 The Cases Studies of Eyewitness Misidentifications during Criminal Investigation in Taiwan
Authors: Chih Hung Shih
Abstract:
Eyewitness identification is one of the efficient information to identify suspects during criminal investigation. However eyewitness identification is improved frequently, inaccurate and plays vital roles in wrongful convictions. Most eyewitness misidentifications are made during police criminal investigation stage and then accepted by juries. Four failure investigation case studies in Taiwan are conduct to demonstrate how misidentifications are caused during the police investigation context. The result shows that there are several common grounds among these cases: (1) investigators lacked for knowledge about eyewitness memory so that they couldn’t evaluate the validity of the eyewitnesses’ accounts and identifications, (2) eyewitnesses were always asked to filter out several suspects during the investigation, and received investigation information which contaminated the eyewitnesses’ memory, (3) one to one live individual identifications were made in most of cases, (4) eyewitness identifications were always used to support the hypotheses of investigators, and exaggerated theirs powers when conform with the investigation lines, (5) the eyewitnesses’ confidence didn’t t reflect the validity of their identifications , but always influence the investigators’ beliefs for the identifications, (6) the investigators overestimated the power of the eyewitness identifications and ignore the inconsistency with other evidence. Recommendations have been proposed for future academic research and police practice of eyewitness identification in Taiwan.Keywords: criminal investigation, eyewitness identification, investigative bias, investigative failures
Procedia PDF Downloads 2446676 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1616675 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 866674 Survey of Potential Adverse Health Effects of Mobile Phones, and Wireless Base Stations in Nigeria
Authors: Nureni A. Yekini, Isaac T. Babalola, Edwin E. Aighokhan, Agnes K. Akinwole, N. Stephen Igwe
Abstract:
Survey was conducted to gather information on potential adverse health effects of Mobile Phones, and Telecommunication Tower Base Stations in Nigeria. Data was sourced from two sampled populations. Firstly from the people living in close proximity to base stations, and secondly from cell phone users. Questionnaire was used to gathered information from 574 people on thirteen non-specific health symptoms. Data obtained was presented and analyzed. The analysis shows that people living close to the based stations over a long period of time with or without cell phone, and also the heavy phone users with close proximity to the base stations are liable to have some potential health hazards, such as fatigue, sleep disturbances, headaches, feeling of discomfort, difficulty in concentrating, depression, memory loss, visual disruptions, irritability, hearing disruptions, skin problems, cardiovascular disorders, and dizziness.Keywords: health hazards, wireless base stations, phone users, mobile phones, Nigeria
Procedia PDF Downloads 321