Search results for: community detection
7235 The Power of Local People in Sustainable Tourism Management: A Case Study of Community Participation on Illuminated Boat Procession in Thailand
Authors: Prompassorn Chunhabunyatip
Abstract:
The objectives of this research were to study the factors affecting the participation of local people and the obstacles and recommendations towards local people’s participation in illuminated boat procession culture. The study looked at both qualitative, and quantitative data were collected by in-depth interview and analyzed by the descriptive approach. The 296 samplings were a local community who participated in constructing the illuminated boat in each community for 14 communities. The results of this study showed that the factor that encourages local people’s participation in illuminated both procession is the awareness of an importance of cultural uniqueness in the local. The problems and obstacles to the participation in illuminated boat procession include the resources for constructing illuminated both such as bamboos are run out of and price increasing, lack of proper cooperation between local people and government officers and conflict in interests between in local government office. So, the result of this study recommended that the government officers should be taken into account about community participation in the illuminated boat procession culture because without local people, the uniqueness culture of Nakhon Phanom Province would not exist and they would not reach the sustainable tourism goal.Keywords: illuminated both culture, community participation, sustainable tourism management, Nakhon Phanom province
Procedia PDF Downloads 3597234 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 1737233 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4357232 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 637231 Project Abandonment and Its Effect on Host Community: Case Study of Ajaokuta Steel Project, Nigeria
Authors: A. A. Omonori, K. T. Alade, A. F. Lawal
Abstract:
This research was conducted to identify the causes of project abandonment in Nigeria and the effect it has on the host community. The aim of the research was to identify the causes and effects of project failure and abandonment. Project abandonment is a major course of concern in the country as different projects fail and are abandoned at various levels. These projects do not fulfill the purpose for which they were initiated. This is the absolute definition of failure and hence the selection of the Ajaokuta Steel Project as an interesting case study and a typical example of project failure and abandonment. This has been done by conducting field study through the administration of questionnaires. This study was carried out on the Ajaokuta Steel Project to investigate the causes of the abandonment of the project and the effects it has had on the people of Ajaokuta community. Qualitative method of data analysis was used to analyze the findings through frequency tables and ranking. This study brought to light the major factors that led to the abandonment of the Ajaokuta Steel Project. The effects the abandonment of the project has had on the immediate community were identified and recommendations made to prevent the menace of Project abandonment.Keywords: abandonment, case-study, Nigeria, project
Procedia PDF Downloads 3637230 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.Keywords: coin, detection, character recognition, topology
Procedia PDF Downloads 2537229 Mapping the Future: Participatory Master Planning for Pioneer Village Tourism in Cibubuan, Sumedang
Authors: Sarojini Imran, Riza Firmansyah, Aula Ramadhan, Chudamul Furqon, Achfriyatama Oktariflandi
Abstract:
This article delves into the participatory approach in formulating a master plan for the development of pioneer village tourism in Cibubuan, Sumedang. We explore the process of participatory mapping that involves the active participation of the local community in planning and envisioning the future of village tourism. This research considers the positive impact that arises when the community takes an active role in designing a master plan that benefits the local economy while preserving culture and the environment. The results of this research reveal that the participatory approach can create a more accurate and community-responsive mapping that aligns with the aspirations of the people in Cibubuan Village. It also provides a deep insight into how community-developed mapping can guide the development of sustainable tourism. By offering a deeper understanding of the participatory role in village tourism development planning, this article provides essential insights for stakeholders and researchers in this field. We hope this article will inspire more communities to adopt a participatory approach in planning the future of their village tourism.Keywords: participatory masterplan, pioneer village tourism, sustainable tourism, community engagement, Cibubuan Village
Procedia PDF Downloads 687228 Analysis of Local Food Sources in Ethiopia
Authors: Bereket Amare Mulu
Abstract:
Ethiopia is one of the countries that consists of a huge variety of botanical resources as compared to the world. The agroclimatic is suitable for a variety of plants to grow effectively throughout the year. Sources of food plants are basic items for people in the world. Production of food items is a prior activity and needs more resources and attention to produce a huge amount of production. The local food is rich in nutrition and healthful foods. The local food is fresh and not exposed to infections easily. The community can easily get the food items in their surroundings. The local food sources are not expensive when it is compared to the other proceed food items, and it is affordable to the community purchasing power. The food is very tasty and palatable capacity by the whole community categories. The basic problems in Ethiopia are the community experiences some of the common food source items. On the contrary, inefficient food production, low economic growth, and climate variability affected food production. This leads to serious food shortages and acute health problems. The objective of the study is to identify local food sources and analyze the advantage and benefits of local food sources. Casava is one of the root crop plants in Ethiopia and easily adapts to any type of agroecology in every place in the country. 50 community members have been identified to prepare casava in different forms of food items. They have prepared in the forms of Bread, Injera, Porridge, Boiled casava, fried chips Casava, and Cocktails. The prepared food items have been exposed to the community as a food festival to eat and taste how much interesting Even though there is a cultural barrier to eating the food items, the community had the food and tasted it the food. The result showed that community awareness is still not addressed the benefits of local food sources yet. The local food has high nutritional value and healthful foods. The local food sources are fresh and easily produced in every place of the country.Keywords: bread, cassava, injera, nutrition
Procedia PDF Downloads 1047227 Creative Means to Address Mental Health in the African American Community: Arts, Advocacy, and Awareness
Authors: Denise F. Brown
Abstract:
This proposal provides an explanation of the content for a Special Topics Course to be offered Spring of 2022. The course will be titled, Creative means to address mental health in the African American Community: Arts, Advocacy, and Awareness. Research shows that African Americans are less likely to seek treatment for mental illnesses. The stigma around mental illness influences negative ideas about having psychological problems within the African American community. Assessments of how African Americans perceive mental illness will also be provided. Current research suggests that understanding mental health is just as important as understanding mental illness. The distinguishment between mental illness and mental health provides a way to not negatively point out mental illness but to better understand that psychological and emotional well-being can be achieved whether a mental illness is present or not. The course will consist of defining mental health and mental illness and then what it means to utilize creative means to become a mental health advocate within the African American community.Keywords: arts, advocacy, black mental health, mental illness
Procedia PDF Downloads 917226 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 4117225 Energy Trends in Rural South Africa: A Case Study of the Mnweni Rural Community in the Province of Kwazulu-Natal
Authors: Noel Chellan
Abstract:
Energy is the life-blood of development. All human societies have been and still are dependent on energy – some societies more than others. With regard to energy in South Africa, previous policies of the apartheid regime neglected the energy needs of poor black communities in general – and rural communities in particular. Since South Africa’s first democratic elections in 1994 – whilst millions of South African households have received electricity from the national electricity grid, there are still many rural communities that are still experiencing challenges in relation to both electricity deprivation as well as provision. This paper looks at the energy-mix of the Mnweni rural community in South Africa and argues that understanding energy is key to understanding the nature and forms of development of any community or country, for that matter. The paper engages with the energy trends in the rural community of Mnweni from the days of apartheid until 2021. It also looks at agricultural practises from an energy perspective. Such an energy perspective will enable one to assess the pace and scale of development in rural Mnweni.Keywords: rural, energy, development, apartheid
Procedia PDF Downloads 2447224 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2357223 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1497222 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 937221 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study
Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester
Abstract:
Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.Keywords: ASD, child, detection, educational intervention, physicians
Procedia PDF Downloads 2937220 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research
Authors: Kamal Prasad Acharya
Abstract:
The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.Keywords: contextual scaffold, community wisdom, science and health learning, school garden
Procedia PDF Downloads 1787219 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece
Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis
Abstract:
The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.Keywords: community resilience, natural disasters, place attachment, wildfire
Procedia PDF Downloads 1037218 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems
Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs
Abstract:
The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation
Procedia PDF Downloads 607217 Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip
Authors: Kunal Das, Priya Sengupta, Abhishek K. Singh
Abstract:
Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper.Keywords: digital microfludic biochip, cross-contamination, pin assignment, microfluidic AND gate
Procedia PDF Downloads 2747216 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer
Procedia PDF Downloads 4967215 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection
Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park
Abstract:
The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis
Procedia PDF Downloads 4687214 A Unique Immunization Card for Early Detection of Retinoblastoma
Authors: Hiranmoyee Das
Abstract:
Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.Keywords: retinoblastoma, immunization, unique, early
Procedia PDF Downloads 1987213 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4227212 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1067211 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang
Authors: Mengying Du, Xiang Chen
Abstract:
‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.Keywords: community demands, historical context, villages-in-city, urbanization
Procedia PDF Downloads 3097210 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 277209 Evaluation of the Level of Knowledge about Probiotics amongst Community Pharmacy Staff in Jordan
Authors: Feras Darwish Elhajji, Alberto Berardi, Manal Ayyash, Iman Basheti
Abstract:
The concept of the use of probiotics for humans now has been known for decades however, their intake by the Jordanian population seems to be less common when compared to population in the developed countries. Community pharmacy is the main supplier of probiotics, however, after conducting an extensive literature review, not any published research article could be found talking about the role, knowledge, and practice of the pharmacists in the area of probiotics. The main aim of this study was to evaluate the level of knowledge about probiotics and their dispensing practice in community pharmacies in Jordan. Community pharmacy staff (pharmacists and technicians) in Amman and north of Jordan were randomly selected to complete an anonymous questionnaire that had been pre-tested and validated. Ethical approval was obtained from the university ethics committee. The questionnaire included the following sections: demographics, knowledge and perceptions about probiotics, and role of the pharmacist Pharmacists and technicians were visited and interviewed in 281 community pharmacies. Asking about probiotics, 90.4% of them said that they know what probiotics are, although only 29.5% agreed that pharmacy staff in Jordan have good knowledge about probiotics, and 88.3% agreed that pharmacy staff in Jordan need more training and knowledge about probiotics. Variables that were significantly related to knowledge about probiotics were being a pharmacist (ρ= 0.012), area of the community pharmacy (ρ= 0.019), and female staff (ρ= 0.031) after conducting logistic regression statistical analysis. More than two-thirds of the participants thought that probiotics are classified as dietary supplements by Jordan Food and Drug Administration (JFDA). Of those who knew probiotics, the majority of them – 76.8% and 91.7% – agreed that probiotics are effective and safe, respectively. Believing in efficacy of the probiotics was significantly associated with answering their use to be with or after antibiotic administration and to increase normal flora gut population (ρ= 0.007). Efficacy was also significantly associated with recommending probiotics to consumers by the pharmacist (ρ< 0.001) and by the doctor (ρ= 0.041). At the same time, the concept of safety was mainly associated with their use for flatulence and gases (ρ= 0.048). Level of knowledge about probiotics and their uses, efficacy and safety amongst community pharmacy staff in Jordan is found to be good. However, this level can be raised in the future, especially knowledge about uses of probiotics.Keywords: community pharmacy, Jordan, prebiotics, probiotics
Procedia PDF Downloads 3667208 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2557207 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite
Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher
Abstract:
In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection
Procedia PDF Downloads 1647206 Stakeholders Perspectives on the Social Determinants of Health and Quality of Life in Aseer Healthy Cities
Authors: Metrek Almetrek, Naser Alqahtani, Eisa Ghazwani, Mona Asiri, Mohammed Alqahtani, Magboolah Balobaid
Abstract:
Background: Advocacy of potential for community coalitions to positively address social determinants of health and quality of life, little is known about the views of stakeholders involved in such efforts. This study sought to assess the provinces leaders’ perspectives about social determinants related to the Health Neighborhood Initiative (HNI), a new county effort to support community coalitions. Method and Subjects: We used a descriptive, qualitative study using personal interviews in 2022. We conducted it in the community coalition's “main cities committees” set across service planning areas that serve vulnerable groups located in the seven registered healthy cities to WHO (Abha, Tareeb, Muhayel, Balqarn, Alharajah, Alamwah, and Bisha). We conducted key informant interviews with 76 governmental, profit, non-profit, and community leaders to understand their perspectives about the HNI. As part of a larger project, this study focused on leaders’ views about social determinants of health related to the HNI. All interviews were audio-recorded and transcribed. An inductive approach to coding was used, with text segments grouped by social determinant categories. Results: Provinces leaders described multiple social determinants of health and quality of life that were relevant to the HNI community coalitions: housing and safety, community violence, economic stability, city services coordination and employment and education. Leaders discussed how social determinants were interconnected with each other and the need for efforts to address multiple social determinants simultaneously to effectively improve health and quality of life. Conclusions: Community coalitions have an opportunity to address multiple social determinants of health and quality of life to meet the social needs of vulnerable groups. Future research should examine how community coalitions, like those in the HNI, can actively engage with community members to identify needs and then deliver evidence-based care.Keywords: social determinants, health and quality of life, vulnerable groups, qualitative research
Procedia PDF Downloads 84