Search results for: Deep learning based segmentation
32630 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7432629 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration
Authors: Tayeb Aissaoui, Inas M. AlNashef
Abstract:
In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt
Procedia PDF Downloads 29332628 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 7432627 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach
Authors: Safak Isik, Ozalp Vayvay
Abstract:
Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation
Procedia PDF Downloads 23932626 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 8132625 Skills Development: The Active Learning Model of a French Computer Science Institute
Authors: N. Paparisteidi, D. Rodamitou
Abstract:
This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.Keywords: active learning, blended learning, higher education, skills development
Procedia PDF Downloads 10432624 Parkinson’s Disease Hand-Eye Coordination and Dexterity Evaluation System
Authors: Wann-Yun Shieh, Chin-Man Wang, Ya-Cheng Shieh
Abstract:
This study aims to develop an objective scoring system to evaluate hand-eye coordination and hand dexterity for Parkinson’s disease. This system contains three boards, and each of them is implemented with the sensors to sense a user’s finger operations. The operations include the peg test, the block test, and the blind block test. A user has to use the vision, hearing, and tactile abilities to finish these operations, and the board will record the results automatically. These results can help the physicians to evaluate a user’s reaction, coordination, dexterity function. The results will be collected to a cloud database for further analysis and statistics. A researcher can use this system to obtain systematic, graphic reports for an individual or a group of users. Particularly, a deep learning model is developed to learn the features of the data from different users. This model will help the physicians to assess the Parkinson’s disease symptoms by a more intellective algorithm.Keywords: deep learning, hand-eye coordination, reaction, hand dexterity
Procedia PDF Downloads 6732623 From Mathematics Project-Based Learning to Commercial Product Using Geometer’s Sketchpad (GSP)
Authors: Krongthong Khairiree
Abstract:
The purpose of this research study is to explore mathematics project-based learning approach and the use of technology in the context of school mathematics in Thailand. Data of the study were collected from 6 sample secondary schools and the students were 6-14 years old. Research findings show that through mathematics project-based learning approach and the use of GSP, students were able to make mathematics learning fun and challenging. Based on the students’ interviews they revealed that, with GSP, they were able to visualize and create graphical representations, which will enable them to develop their mathematical thinking skills, concepts and understanding. The students had fun in creating variety of graphs of functions which they can not do by drawing on graph paper. In addition, there are evidences to show the students’ abilities in connecting mathematics to real life outside the classroom and commercial products, such as weaving, patterning of broomstick, and ceramics design.Keywords: mathematics, project-based learning, Geometer’s Sketchpad (GSP), commercial products
Procedia PDF Downloads 33632622 Proposing Problem-Based Learning as an Effective Pedagogical Technique for Social Work Education
Authors: Christine K. Fulmer
Abstract:
Social work education is competency based in nature. There is an expectation that graduates of social work programs throughout the world are to be prepared to practice at a level of competence, which is beneficial to both the well-being of individuals and community. Experiential learning is one way to prepare students for competent practice. The use of Problem-Based Learning (PBL) is a form experiential education that has been successful in a number of disciplines to bridge the gap between the theoretical concepts in the classroom to the real world. PBL aligns with the constructivist theoretical approach to learning, which emphasizes the integration of new knowledge with the beliefs students already hold. In addition, the basic tenants of PBL correspond well with the practice behaviors associated with social work practice including multi-disciplinary collaboration and critical thinking. This paper makes an argument for utilizing PBL in social work education.Keywords: social work education, problem-based learning, pedagogy, experiential learning, constructivist theoretical approach
Procedia PDF Downloads 31532621 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2332620 Implementation of Computer-Based Technologies into Foreign Language Teaching Process
Authors: Golovchun Aleftina, Dabyltayeva Raikhan
Abstract:
Nowadays, in the world of widely developing cross-cultural interactions and rapidly changing demands of the global labor market, foreign language teaching and learning has taken a special role not only in school education but also in everyday life. Cognitive Lingua-Cultural Methodology of Foreign Language Teaching originated in Kazakhstan brings a communicative approach to the forefront in foreign language teaching that gives raise a variety of techniques to make the language learning a real communication. One of these techniques is Computer Assisted Language Learning. In our article, we aim to: demonstrate what learning benefits students are likely to get by teachers having implemented computer-based technologies into foreign language teaching process; prove that technology-based classroom serves as the best tool for interactive and efficient language learning; give examples of classroom sufficient organization with computer-based activities.Keywords: computer assisted language learning, learning benefits, foreign language teaching process, implementation, communicative approach
Procedia PDF Downloads 47332619 Establishing Student Support Strategies for Virtual Learning in Learning Management System Based on Grounded Theory
Authors: Farhad Shafiepour Motlagh, Narges Salehi
Abstract:
Purpose: The purpose of this study was to support student strategies for virtual learning in the learning management system. Methodology: The research method was based on grounded theory. The statistical population included all the articles of the ten years 2022-2010, and the sampling method was purposeful to the extent of theoretical saturation (n=31 ). Data collection was done by referring to the authoritative scientific databases of Emerald, Springer, Elsevier, Google Scholar, Sage Publication, and Science Direct. For data analysis, open coding, axial coding, and selective coding were used. Results: The results showed that causal conditions include cognitive empowerment (comprehension, analysis, composition), emotional empowerment (learning motivation, involvement in the learning system, enthusiasm for learning), psychomotor empowerment (learning to master, internalizing learning skills, creativity in learning). Conclusion: Supporting students requires their empowerment in three dimensions: cognitive, emotional empowerment, and psychomotor empowerment. In such a way that by introducing them to enter the learning management system, the capacities of the system, the toolkit of learning in the system, improve the motivation to learn in them, and in such a case, by learning more in the learning management system, they will reach mastery learning.Keywords: student support, virtual education, learning management system, electronic
Procedia PDF Downloads 30732618 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market
Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad
Abstract:
Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy
Procedia PDF Downloads 54132617 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 16432616 Omani PE Candidate Self-Reports of Learning Strategies Used to Learn Sport Skills
Authors: Nasser Al-Rawahi
Abstract:
The study aims at determining self-regulated learning strategies used by Omani physical education candidates to learn sport skills. The data were collected by a self-regulated learning theory questionnaire. The sample of the study comprised of 145 undergraduate physical education students enrolled in the department of physical education at the College of Education, Sultan Qaboos University. The findings of the study revealed that the most commonly used strategies for learning sport skills by Omani physical education candidate are ‘the effort learning strategies, planning learning strategies and evaluation learning strategies’. However, the reflection learning strategies, self-monitoring and self-efficacy learning strategies were revealed as the least used strategies by the PE candidates in learning and acquiring sport skills. Based on these findings, suggestions and recommendations for future research were provided.Keywords: learning strategies, physical education candidates, self-regulated learning theory, Oman
Procedia PDF Downloads 61732615 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 34132614 Learning Object Interface Adapted to the Learner's Learning Style
Authors: Zenaide Carvalho da Silva, Leandro Rodrigues Ferreira, Andrey Ricardo Pimentel
Abstract:
Learning styles (LS) refer to the ways and forms that the student prefers to learn in the teaching and learning process. Each student has their own way of receiving and processing information throughout the learning process. Therefore, knowing their LS is important to better understand their individual learning preferences, and also, understand why the use of some teaching methods and techniques give better results with some students, while others it does not. We believe that knowledge of these styles enables the possibility of making propositions for teaching; thus, reorganizing teaching methods and techniques in order to allow learning that is adapted to the individual needs of the student. Adapting learning would be possible through the creation of online educational resources adapted to the style of the student. In this context, this article presents the structure of a learning object interface adaptation based on the LS. The structure created should enable the creation of the adapted learning object according to the student's LS and contributes to the increase of student’s motivation in the use of a learning object as an educational resource.Keywords: adaptation, interface, learning object, learning style
Procedia PDF Downloads 40632613 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 1732612 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means
Procedia PDF Downloads 29232611 The Role of E-Learning in Science, Technology, Engineering, and Math Education
Authors: Annette McArthur
Abstract:
The traditional model of teaching and learning, where ICT sits as a separate entity is not a model for a 21st century school. It is imperative that teaching and learning embraces technological advancements. The challenge in schools lies in shifting the mindset of teachers so they see ICT as integral to their teaching, learning and curriculum rather than a separate E-Learning curriculum stream. This research project investigates how the effective, planned, intentional integration of ICT into a STEM curriculum, can enable the shift in the teacher mindset. The project incorporated: • Developing a professional coaching relationship with key STEM teachers. • Facilitating staff professional development involving student centered project based learning pedagogy in the context of a STEM curriculum. • Facilitating staff professional development involving digital literacy. • Establishing a professional community where collaboration; sharing and reflection were part of the culture of the STEM community. • Facilitating classroom support for the effective delivery innovative STEM curriculum. • Developing STEM learning spaces where technologies were used to empower and engage learners to participate in student-centered, project-based learning.Keywords: e-learning, ICT, project based learning, STEM
Procedia PDF Downloads 30132610 Sleep Tracking AI Application in Smart-Watches
Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan
Abstract:
This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML
Procedia PDF Downloads 8232609 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 13132608 Shear Strengthening of Reinforced Concrete Deep Beam Using Fiber Reinforced Polymer Strips
Authors: Ruqaya H. Aljabery
Abstract:
Reinforced Concrete (RC) deep beams are one of the main critical structural elements in terms of safety since significant loads are carried in a short span. The shear capacity of these sections cannot be predicted accurately by the current design codes like ACI and EC2; thus, they must be investigated. In this research, non-linear behavior of RC deep beams strengthened in shear with Fiber Reinforced Polymer (FRP) strips, and the efficiency of FRP in terms of enhancing the shear capacity in RC deep beams are examined using Finite Element Analysis (FEA), which is conducted using the software ABAQUS. The effect of several parameters on the shear capacity of the RC deep beam are studied in this paper as well including the effect of the cross-sectional area of the FRP strip and the shear reinforcement area to the spacing ratio (As/S), and it was found that FRP enhances the shear capacity significantly and can be a substitution of steel stirrups resulting in a more economical design.Keywords: Abaqus, concrete, deep beam, finite element analysis, FRP, shear strengthening, strut-and-tie
Procedia PDF Downloads 15032607 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 6432606 Instruction and Learning Design Consideration for the Development of Mobile Learning Application
Authors: M. Sarrab, M. Elbasir
Abstract:
Most of mobile learning applications currently available are developed for the formal education and learning environment. Those applications are characterized by the improvement of the interaction process between instructors and learners to provide more collaboration and flexibility in the learning process. Despite the long history and large amount of research on Instruction design model and mobile learning there is no complete and well defined set of steps to follow in designing mobile learning applications. Based on this scenario, this paper focuses on identifying instruction design phases considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study with focus on standards for learning and mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.Keywords: instruction design, mobile learning, mobile application
Procedia PDF Downloads 60432605 The Results of Research Based-Learning for Developing the Learning and Innovation Skills of Undergraduate Students
Authors: Jatuphum Ketchatturat
Abstract:
The objective of this research was to study the learning and innovation skills of undergraduate students after Research-Based Learning had been applied. Eighty research participants were selected from undergraduate students enrolled in Educational Research Program using the Purposive Sampling Method. Research Methodology was Descriptive Research, the research took one semester to complete. The research instruments consisted of (1) Research Skill Assessment Form, (2) Research Quality Assessment Form, (3) Scale of learning and innovation skills 25 items. The quantitative data were analysed using descriptive statistics including, frequency, percentage, average and standard deviation. The qualitative data were analyzed using content analysis. The research results were (1) The students were able to conduct research that focused on educational research, which has a fair to the excellent level of standards of a research learning outcome, research skills, and research quality. The student’s learning and innovation skills have relating to research skills and research quality. (2) The findings found that the students have been developed to be learning and innovation skills such as systematic thinking, analytical thinking, critical thinking, creative problem solving, collaborative, research-creation, communication, and knowledge and experience sharing to friends, community and society.Keywords: learning and innovation skills, research based learning, research skills, undergraduate students
Procedia PDF Downloads 17932604 Expansion of Subjective Learning at Japanese Universities: Experiential Learning Based on Social Participation
Authors: Kumiko Inagaki
Abstract:
Qualitative changes to the undergraduate education have recently become the focus of attention in Japan. This is occurring against the backdrop of declining birthrate and increasing university enrollment, as well as drastic societal changes of advance toward globalization and a knowledge-based society. This paper describes the cases of Japanese universities that promoted various forms of experiential learning around the theme of social participation. The opportunity of learning through practical experience, where students turn their attention to social problems and take pains to consider means of resolving them, creates opportunities to demonstrate “human power” applicable to all sorts of activities the following graduation, thereby guaranteeing students’ continuous growth throughout their careers.Keywords: career education, experiential learning, subjective learning, university education
Procedia PDF Downloads 31132603 Role of Feedbacks in Simulation-Based Learning
Authors: Usman Ghani
Abstract:
Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.Keywords: simulation, feedback, training, hands-on, labs
Procedia PDF Downloads 37732602 An Automatic Method for Building Learners’ Groups in Virtual Environment
Authors: O. Bourkoukou, Essaid El Bachari
Abstract:
The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.Keywords: building groups, collaborative learning, e-learning, learning objects
Procedia PDF Downloads 29832601 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 34