Search results for: surface integrity
1150 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes
Authors: Hacer Sule Gonul, Vedat Uyak
Abstract:
Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.Keywords: pesticide, drinking water, carbon nanotube, adsorption
Procedia PDF Downloads 1781149 Design of an Active Compression System for Treating Vascular Disease Using a Series of Silicone Based Inflatable Mini Bladders
Authors: Gayani K. Nandasiri, Tilak Dias, William Hurley
Abstract:
Venous disease of human lower limb could range from minor asymptomatic incompetence of venous valves to chronic venous ulceration. The sheer prevalence of varicose veins and its associated significant costs of treating late complications such as chronic ulcers contribute to a higher burden on health care resources. In most of western countries with developed health care systems, treatment costs associated with Venous disease accounts for a considerable portion of their total health care budget, and it has become a high-cost burden to National Health Service (NHS), UK. The established gold standard of treatment for the venous disease is the graduated compression, where the pressure at the ankle being highest and decreasing towards the knee and thigh. Currently, medical practitioners use two main methods to treat venous disease; i.e. compression bandaging and compression stockings. Both these systems have their own disadvantages which lead to the current programme of research. The aim of the present study is to revolutionize the compression therapy by using a novel active compression system to deliver a controllable and more accurate pressure profiles using a series of inflatable mini bladders. Two types of commercially available silicones were tested for the application. The mini bladders were designed with a special fabrication procedure to provide required pressure profiles, and a series of experiments were conducted to characterise the mini bladders. The inflation/deflation heights of these mini bladders were investigated experimentally and using a finite element model (FEM), and the experimental data were compared to the results obtained from FEM simulations, which showed 70-80% agreement. Finally, the mini bladders were tested for its pressure transmittance characteristics, and the results showed a 70-80% of inlet air pressure transmitted onto the treated surface.Keywords: finite element analysis, graduated compression, inflatable bladders, venous disease
Procedia PDF Downloads 1891148 Algae Growth and Biofilm Control by Ultrasonic Technology
Authors: Vojtech Stejskal, Hana Skalova, Petr Kvapil, George Hutchinson
Abstract:
Algae growth has been an important issue in water management of water plants, ponds and lakes, swimming pools, aquaculture & fish farms, gardens or golf courses for last decades. There are solutions based on chemical or biological principles. Apart of these traditional principles for inhibition of algae growth and biofilm production there are also physical methods which are very competitive compared to the traditional ones. Ultrasonic technology is one of these alternatives. Ultrasonic emitter is able to eliminate the biofilm which behaves as a host and attachment point for algae and is original reason for the algae growth. The ultrasound waves prevent majority of the bacteria in planktonic form becoming strongly attached sessile bacteria that creates welcoming layer for the biofilm production. Biofilm creation is very fast – in the serene water it takes between 30 minutes to 4 hours, depending on temperature and other parameters. Ultrasound device is not killing bacteria. Ultrasound waves are passing through bacteria, which retract as if they were in very turbulent water even though the water is visually completely serene. In these conditions, bacteria does not excrete the polysaccharide glue they use to attach to the surface of the pool or pond, where ultrasonic technology is used. Ultrasonic waves decrease the production of biofilm on the surfaces in the selected area. In case there are already at the start of the application of ultrasonic technology in a pond or basin clean inner surfaces, the biofilm production is almost absolutely inhibited. This paper talks about two different pilot applications – one in Czech Republic and second in United States of America, where the used ultrasonic technology (AlgaeControl) is coming from. On both sites, there was used Mezzo Ultrasonic Algae Control System with very positive results not only on biofilm production, but also algae growth in the surrounding area. Technology has been successfully tested in two different environments. The poster describes the differences and their influence on the efficiency of ultrasonic technology application. Conclusions and lessons learned can be possibly applied also on other sites within Europe or even further.Keywords: algae growth, biofilm production, ultrasonic solution, ultrasound
Procedia PDF Downloads 2741147 In-vitro Metabolic Fingerprinting Using Plasmonic Chips by Laser Desorption/Ionization Mass Spectrometry
Authors: Vadanasundari Vedarethinam, Kun Qian
Abstract:
The metabolic analysis is more distal over proteomics and genomics engaging in clinics and needs rationally distinct techniques, designed materials, and device for clinical diagnosis. Conventional techniques such as spectroscopic techniques, biochemical analyzers, and electrochemical have been used for metabolic diagnosis. Currently, there are four major challenges including (I) long-term process in sample pretreatment; (II) difficulties in direct metabolic analysis of biosamples due to complexity (III) low molecular weight metabolite detection with accuracy and (IV) construction of diagnostic tools by materials and device-based platforms for real case application in biomedical applications. Development of chips with nanomaterial is promising to address these critical issues. Mass spectroscopy (MS) has displayed high sensitivity and accuracy, throughput, reproducibility, and resolution for molecular analysis. Particularly laser desorption/ ionization mass spectrometry (LDI MS) combined with devices affords desirable speed for mass measurement in seconds and high sensitivity with low cost towards large scale uses. We developed a plasmonic chip for clinical metabolic fingerprinting as a hot carrier in LDI MS by series of chips with gold nanoshells on the surface through controlled particle synthesis, dip-coating, and gold sputtering for mass production. We integrated the optimized chip with microarrays for laboratory automation and nanoscaled experiments, which afforded direct high-performance metabolic fingerprinting by LDI MS using 500 nL of serum, urine, cerebrospinal fluids (CSF) and exosomes. Further, we demonstrated on-chip direct in-vitro metabolic diagnosis of early-stage lung cancer patients using serum and exosomes without any pretreatment or purifications. To our best knowledge, this work initiates a bionanotechnology based platform for advanced metabolic analysis toward large-scale diagnostic use.Keywords: plasmonic chip, metabolic fingerprinting, LDI MS, in-vitro diagnostics
Procedia PDF Downloads 1661146 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia
Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui
Abstract:
To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia
Procedia PDF Downloads 2951145 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System
Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler
Abstract:
PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech RepublicKeywords: drug delivery, growth factors, hMSC, liposomes, nanofibres
Procedia PDF Downloads 2941144 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization
Procedia PDF Downloads 5151143 Quantification of River Ravi Pollution and Oxidation Pond Treatment to Improve the Drain Water Quality
Authors: Yusra Mahfooz, Saleha Mehmood
Abstract:
With increase in industrialization and urbanization, water contaminating rivers through effluents laden with diverse chemicals in developing countries. The study was based on the waste water quality of the four drains (Outfall, Gulshan -e- Ravi, Hudiara, and Babu Sabu) which enter into river Ravi in Lahore, Pakistan. Different pollution parameters were analyzed including pH, DO, BOD, COD, turbidity, EC, TSS, nitrates, phosphates, sulfates and fecal coliform. Approximately all the water parameters of drains were exceeded the permissible level of wastewater standards. In calculation of pollution load, Hudiara drains showed highest pollution load in terms of COD i.e. 429.86 tons/day while in Babu Sabu drain highest pollution load was calculated in terms of BOD i.e. 162.82 tons/day (due to industrial and sewage discharge in it). Lab scale treatment (oxidation ponds) was designed in order to treat the waste water of Babu Sabu drain, through combination of different algae species i.e. chaetomorphasutoria, sirogoniumsticticum and zygnema sp. Two different sizes of ponds (horizontal and vertical), and three different concentration of algal samples (25g/3L, 50g/3L, and 75g/3L) were selected. After 6 days of treatment, 80 to 97% removal efficiency was found in the pollution parameters. It was observed that in the vertical pond, maximum reduction achieved i.e. turbidity 62.12%, EC 79.3%, BOD 86.6%, COD 79.72%, FC 100%, nitrates 89.6%, sulphates 96.9% and phosphates 85.3%. While in the horizontal pond, the maximum reduction in pollutant parameters, turbidity 69.79%, EC 83%, BOD 88.5%, COD 83.01%, FC 100%, nitrates 89.8%, sulphates 97% and phosphates 86.3% was observed. Overall treatment showed that maximum reduction was carried out in 50g algae setup in the horizontal pond due to large surface area, after 6 days of treatment. Results concluded that algae-based treatment are most energy efficient, which can improve drains water quality in cost effective manners.Keywords: oxidation pond, ravi pollution, river water quality, wastewater treatment
Procedia PDF Downloads 3031142 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints
Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich
Abstract:
Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void
Procedia PDF Downloads 1261141 Numerical Study on the Effects of Truncated Ribs on Film Cooling with Ribbed Cross-Flow Coolant Channel
Abstract:
To evaluate the effect of the ribs on internal structure in film hole and the film cooling performance on outer surface, the numerical study investigates on the effects of rib configuration on the film cooling performance with ribbed cross-flow coolant channel. The base smooth case and three ribbed cases, including the continuous rib case and two cross-truncated rib cases with different arrangement, are studied. The distributions of adiabatic film cooling effectiveness and heat transfer coefficient are obtained under the blowing ratios with the value of 0.5 and 1.0, respectively. A commercial steady RANS (Reynolds-averaged Navier-Stokes) code with realizable k-ε turbulence model and enhanced wall treatment were performed for numerical simulations. The numerical model is validated against available experimental data. The two cross-truncated rib cases produce approximately identical cooling effectiveness compared with the smooth case under lower blowing ratio. The continuous rib case significantly outperforms the other cases. With the increase of blowing ratio, the cases with ribs are inferior to the smooth case, especially in the upstream region. The cross-truncated rib I case produces the highest cooling effectiveness among the studied the ribbed channel case. It is found that film cooling effectiveness deteriorates with the increase of spiral intensity of the cross-flow inside the film hole. Lower spiral intensity leads to a better film coverage and thus results in better cooling effectiveness. The distinct relative merits among the cases at different blowing ratios are explored based on the aforementioned dominant mechanism. With regard to the heat transfer coefficient, the smooth case has higher heat transfer intensity than the ribbed cases under the studied blowing ratios. The laterally-averaged heat transfer coefficient of the cross-truncated rib I case is higher than the cross-truncated rib II case.Keywords: cross-flow, cross-truncated rib, film cooling, numerical simulation
Procedia PDF Downloads 1381140 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes
Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta
Abstract:
Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.Keywords: tillage, soil respiration, MBC, fungal-bacterial activity
Procedia PDF Downloads 2651139 Investigation of Mechanical Properties of Epoxy-Nanocomposite Reinforced with Copper Coated MWCNTs
Authors: M. Nazem Salimi, C. Abrinia, M. Baniassadi, M. Ehsani
Abstract:
Mechanical properties of epoxy based nanocomposites containing copper coated MWCNTs were investigated and a comparative study between nanocomposites containing functionalized MWCNTs and copper coated MWCNTs which are already functionalized was conducted. The MWCNTs was deposited with copper nanoparticles through electroless deposition process after accomplishment of "two-step" method as sensitization and activation procedures on oxidized MWCNTs. In addition, functionalization of MWCNTs was carried out through combination of two covalent and non-covalent funcionalization methods using HNO3 for acid solution of covalent treatment and Triton X100 as non-ionic surfactant of non-covalent treatment. The presence of functional groups and removal of impurities of MWCNTs were confirmed by FTIR and Raman spectroscopy, respectively. The layer of copper nanoparticles on the MWCNTs wall increasing its diameter was observed by SEM. Utilizing solution blending process, 0.1%, 0.5% and 1.5% wt loading of both copper coated MWCNTs and non-coated MWCNTs were used to prepare epoxy-based nanocomposites. The tensile, flexural and impact properties of nanocomposites were investigated. The results of tensile test demonstrated that nanocomposites containing copper coated MWCNTs exhibited brittle behavior compared to those reinforced with functionalized MWCNTs, whereas former one exhibited higher values of modulus than latter one for concentrations more than 0.4% wt. Presence of copper particles on MWCNTs surface decreased the tensile strength of nanocomposites. In comparison to pure epoxy, nanocomposites with treated-MWCNTs and Cu-MWCNTs loading of 0.1% wt showed an increase of 35% and 51.6% for flexural strength beside 20% and 30% increase in flexural modulus, respectively, whereas flexural properties of both naocomposites decreased with increasing of CNTs concentration. The results of impact strength of nanocomposites with Cu-CNTs demonstrated that impact properties decreased with increasing of filler content with a optimum value at 0.1% wt while in high concentrations impact properties of Cu-nanocomposites exhibited lower values than f-MWCNT nanocomposites.Keywords: epoxyresin, nanocomposite, functionalization, copper, electroless deposition process, mechanical properties
Procedia PDF Downloads 3681138 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1631137 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting
Authors: D. O. Ramadan, R. S. Dwyer-Joyce
Abstract:
The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring
Procedia PDF Downloads 4911136 Development of Fixture for Pipe to Pipe Friction Stir Welding of Dissimilar Materials
Authors: Aashutosh A. Tadse, Kush Mehta, Hardik Vyas
Abstract:
Friction Stir Welding is a process in which an FSW tool produces friction heat and thus penetrates through the junction and upon rotation carries out the weld by exchange of material within the 2 metals being welded. It involves holding the workpieces stiff enough to bear the force of the tool moving across the junction to carry out a successful weld. The weld that has flat plates as workpieces, has a quite simpler geometry in terms of fixture holding them. In the case of FSW of pipes, the pipes need to be held firm with the chucks and jaws according to the diameter of the pipes being welded; the FSW tool is then revolved around the pipes to carry out the weld. Machine requires a larger area and it becomes more costly because of such a setup. To carry out the weld on the Milling machine, the newly designed fixture must be set-up on the table of milling machine and must facilitate rotation of pipes by the motor being shafted to one end of the fixture, and the other end automatically rotated because of the rotating jaws held tight enough with the pipes. The set-up has tapered cones as the jaws that would go in the pipes thus holding it with the help of its knurled surface providing the required grip. The process has rotation of pipes with the stationary rotating tool penetrating into the junction. The FSW on pipes in this process requires a very low RPM of pipes to carry out a fine weld and the speed shall change with every combination of material and diameter of pipes, so a variable speed setting motor shall serve the purpose. To withstand the force of the tool, an attachment to the shaft is provided which will be diameter specific that will resist flow of material towards the center during the weld. The welded joint thus carried out will be proper to required standards and specifications. Current industrial requirements state the need of space efficient, cost-friendly and more generalized form of fixtures and set-ups of machines to be put up. The proposed design considers every mentioned factor and thus proves to be positive in the same.Keywords: force of tool, friction stir welding, milling machine, rotation of pipes, tapered cones
Procedia PDF Downloads 1171135 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell
Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem
Abstract:
To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction
Procedia PDF Downloads 671134 The Role of Immunologic Diamonds in Dealing with Mycobacterium Tuberculosis; Responses of Immune Cells in Affliction to the Respiratory Tuberculosis
Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Elham Javanroudi
Abstract:
Introduction: Tuberculosis (TB) is a known disease with hidden features caused by Mycobacterium tuberculosis (MTB). This disease, which is one of the 10 deadliest in the world, has caused millions of deaths in recent decades. Furthermore, TB is responsible for infecting about 30% population of world. Like any infection, TB can activate the immune system by locating and colonization in the human body, especially in the alveoli. TB is granulomatosis, so MTB can absorb the host’s immune cells and other cells to form granuloma. Method: Different databases (e.g., PubMed) were recruited to prepare this paper and fulfill our goals to search and find effective papers and investigations. Results: Immune response to MTB is related to T cell killers and contains CD1, CD4, and CD8 T lymphocytes. CD1 lymphocytes can recognize glycolipids, which highly exist in the Mycobacterial fatty cell wall. CD4 lymphocytes and macrophages form granuloma, and it is the main line of immune response to Mycobacteria. On the other hand, CD8 cells have cytolytic function for directly killing MTB by secretion of granulysin. Other functions and secretion to the deal are interleukin-12 (IL-12) by induction of expression interferon-γ (INF-γ) for macrophages activation and creating a granuloma, and tumor necrosis factor (TNF) by promoting macrophage phagolysosomal fusion. Conclusion: Immune cells in battle with MTB are macrophages, dendritic cells (DCs), neutrophils, and natural killer (NK) cells. These immune cells can recognize the Mycobacterium by various receptors, including Toll-like receptors (TLRs), Nod-like receptors (NLRs), and C-type lectin receptors (CLRs) located in the cell surface. In human alveoli exist about 50 dendritic macrophages, which have close communication with other immune cells in the circulating system and epithelial cells to deal with Mycobacteria. Against immune cells, MTB handles some factors (e.g., cordfactor, O-Ag, lipoarabinomannan, sulfatides, and adenylate cyclase) and practical functions (e.g., inhibition of macrophages).Keywords: mycobacterium tuberculosis, immune responses, immunological mechanisms, respiratory tuberculosis
Procedia PDF Downloads 1121133 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 2551132 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation
Authors: Doaa Hamdi, Ahmed Hashem
Abstract:
The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).Keywords: remote sensing, petrography, mineralization, alteration detection
Procedia PDF Downloads 1701131 The Relation between Urbanization and Forestry Policies in Turkey
Authors: Azize Serap Tuncer
Abstract:
Turkey is one of the most outstanding figures among the Mediterranean countries from the natural and historical point at view. It is relatively rich country as regards the flora and vegetation. But at the same time as a result of improper and unplanned usage of the land for centuries, its forests and fertile soils have been exposed to great damages. While rapid and uncontrolled urbanization has important effects on the environment, urban development legislations, have become very unsufficient for the protection of these areas. Some of them have been completely eradicated, and some others have lost their fertility. Besides Turkey has a high main land with a rough surface and its soils areas exposed to heavy erosion. On the other hand as a developing country, it is not willing to endanger the goals of industrialization and avoid foreign direct investment by implementing strict environmental policies. Although this kind of pressure on forestland resources threatens the stability of forest land and land use management, in recent years, there has been an obvious increase in public concern about environmental problems like over global warming, environmental pollution, deforestation and their potential effects on natural resources. To protect the ecological balance and prevention of naturel resources from the unplanned intervention of human-beıng is only possible establishing conservation areas wıth co-operation at the national and the internatıonal levels. This study was carried out to evaluate the relation between urbanization and forestry policies in Turkey. While it elaborates the normative arrangements resulting in power conflicts, it also addresses which shortages and discrepancies are responsible for the said conflicts. The present urban reconstruction and transformation practices and their aesthetic and functional aspects were studied with some examples in a country level and evaluated within the assistance of literature researches, analyses, and observations. Atatürk Forest Farm and ODTU Forest examples were negotiated as two famous cases. Obtained findings were supported by charts and photos.Keywords: deforestration, environmental policies, metropolitan, pollution, urbanization
Procedia PDF Downloads 1611130 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4351129 Development of an Atmospheric Radioxenon Detection System for Nuclear Explosion Monitoring
Authors: V. Thomas, O. Delaune, W. Hennig, S. Hoover
Abstract:
Measurement of radioactive isotopes of atmospheric xenon is used to detect, locate and identify any confined nuclear tests as part of the Comprehensive Nuclear Test-Ban Treaty (CTBT). In this context, the Alternative Energies and French Atomic Energy Commission (CEA) has developed a fixed device to continuously measure the concentration of these fission products, the SPALAX process. During its atmospheric transport, the radioactive xenon will undergo a significant dilution between the source point and the measurement station. Regarding the distance between fixed stations located all over the globe, the typical volume activities measured are near 1 mBq m⁻³. To avoid the constraints induced by atmospheric dilution, the development of a mobile detection system is in progress; this system will allow on-site measurements in order to confirm or infringe a suspicious measurement detected by a fixed station. Furthermore, this system will use beta/gamma coincidence measurement technique in order to drastically reduce environmental background (which masks such activities). The detector prototype consists of a gas cell surrounded by two large silicon wafers, coupled with two square NaI(Tl) detectors. The gas cell has a sample volume of 30 cm³ and the silicon wafers are 500 µm thick with an active surface area of 3600 mm². In order to minimize leakage current, each wafer has been segmented into four independent silicon pixels. This cell is sandwiched between two low background NaI(Tl) detectors (70x70x40 mm³ crystal). The expected Minimal Detectable Concentration (MDC) for each radio-xenon is in the order of 1-10 mBq m⁻³. Three 4-channels digital acquisition modules (Pixie-NET) are used to process all the signals. Time synchronization is ensured by a dedicated PTP-network, using the IEEE 1588 Precision Time Protocol. We would like to present this system from its simulation to the laboratory tests.Keywords: beta/gamma coincidence technique, low level measurement, radioxenon, silicon pixels
Procedia PDF Downloads 1301128 Analyzing Land use change and its impacts on the Urban Environment in a Fast Growing Metropolitan City of Pakistan
Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi
Abstract:
In a rapidly growing developing country cities are becoming more urbanized leading to modifications in urban climate. Rapid urbanization, especially unplanned urban land expansion, together with climate change has a profound impact on the urban settlement and urban thermal environment. Cities, particularly Pakistan are facing remarkably environmental issues and uneven development, and thus it is important to strengthen the investigation of urban environmental pressure brought by land-use changes and urbanization. The present study investigated the long term modification of the urban environment by urbanization utilizing Spatio-temporal dynamics of land-use change, urban population data, urban heat islands, monthly maximum, and minimum temperature of thirty years, multi remote sensing imageries, and spectral indices such as Normalized Difference Built-up Index and Normalized Difference Vegetation Index. The results indicate rapid growth in an urban built-up area and a reduction in vegetation cover in the last three decades (1990-2020). A positive correlation between urban heat islands and Normalized Difference Built-up Index, whereas a negative correlation between urban heat islands and the Normalized Difference Vegetation Index clearly shows how urbanization is affecting the local environment. The increase in air and land surface temperature temperatures is dangerous to human comfort. Practical approaches, such as increasing the urban green spaces and proper planning of the cities, have been suggested to help prevent further modification of the urban thermal environment by urbanization. The findings of this work are thus important for multi-sectorial use in the cities of Pakistan. By taking into consideration these results, the urban planners, decision-makers, and local government can make different policies to mitigate the urban land use impacts on the urban thermal environment in Pakistan.Keywords: land use, urban environment, local climate, Lahore
Procedia PDF Downloads 1141127 Influence of Recycled Polymer-Based Aggregates on Mechanical Properties of Polymer Concrete
Authors: Ahmet Kurklu, Abdussamed Sarp, Gokmen Arikan, Akin Eren, Arif Ulu, Ferit Cakir
Abstract:
Our natural resources are diminishing day by day with the needs of the growing world population. There is a danger that these resources will be depleted if they are not used in a controlled manner. As a result of the rapid increase in the consumption of limited natural resources, one of the issues where studies have gained importance is recycling. Many countries have carried out various research and development activities on recycling and reuse to prevent wastage of resources. For sustainable and healthy living, the limited amount of raw material resources in nature should be consumed consciously, and the necessary awareness should be given for recycling activities. One of the sectors where the consumption of raw materials is high is the construction sector. With the changing consumption habits of the evolving technology in the construction sector, the need to use special concrete along with the normal concrete has arisen. With the increasing need for specialty concretes, polymer concrete, which was discovered in the early 1900s, has evolved to the present day. Polymer concretes are special concretes with high strength, water impermeability, resistance to chemical action, and low surface roughness. Thanks to these properties, they find wide applications in many fields such as swimming pools, drainage systems, repair works. In the study, the effect of using recycled aggregates instead of natural aggregates in the production of polymer concrete on the performance of polymer concrete is investigated. In the experiments conducted for this purpose, the use of natural aggregate is reduced at certain rates, and instead, recycled aggregate is added at the same rate. The recycled aggregate to be used in the study is obtained from the polymer concrete drainage channel production facility of Mert Casting Co., Istanbul, Turkey. In order to clearly observe the effect of recycled materials on the product in the study, the other components (resin, hardener, accelerator, and additive) are kept constant in the concrete mix. In the study, fresh and hardened concrete tests are to be carried out on the mixes to be prepared.Keywords: concrete, mechanical properties, polymer concrete, recycle aggregate
Procedia PDF Downloads 1481126 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment
Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini
Abstract:
The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment
Procedia PDF Downloads 1501125 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images
Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu
Abstract:
The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.Keywords: level set model, multi-temporal image, lake contour extraction, contour update
Procedia PDF Downloads 3701124 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles
Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz
Abstract:
Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles
Procedia PDF Downloads 1521123 Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)
Authors: Komal Vig
Abstract:
Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653.Keywords: LTP, HUVEC cells, vascular graft, endothelialization
Procedia PDF Downloads 771122 A Method for Precise Vertical Position of the Implant When Using Computerized Surgical Guides and Bone Reduction
Authors: Abraham Finkelman
Abstract:
Computerized Surgical Guides have been proven to be a predictable way to perform dental implants, with a relatively high accuracy in comparison to a treatment plan. When using the CSG Bone supported, it allows us to make the necessary changes of the hard tissue prior to the implant placement and after the implant placement. The CSG gives us an accurate position for the drilling, and during the implant placement it allows us to alter the vertical position of the implant altering the final position of the abutment and avoiding any risk of any damage to the adjacent anatomical structures. Any Changes required to the bone level can be done prior to the fixation of the CSG using a reduction guide, which incur extra surgical fees and the need of a second surgical guide. Any changes of the bone level after the implant placement are at the risk of damaging the implant neck surface. The technique consists of a universal system that allows us to remove the excess bone around the implant sockets prior to the implant placement which then enables us to place the implant in the vertical position with accuracy as planned with the CSG. The systems consist of a hollow pin of different sizes and diameters. Depending on the implant system that we are using. Length sizes are from 6mm-16mm and a diameter of 2.6mm-4.8mm. Upon the completion of the drilling, the pin is then inserted into the implant socket-using the insertion tool. Once the insertion tool has unscrewed the pin, we can continue with the bone reduction. The bone reduction can be done using conventional methods upon the removal of all the excess bone around the pin. The insertion tool is then screwed into the pin and the pin is then removed. We now, have the new bone level at the crest of the implant socket which is our mark for the vertical position of the implant. In some cases, when we are locating the implant very close to anatomical structures, any form of deviation to the vertical position of the implant during the surgery, can cause damage to such anatomical structures, creating irreversible damages such as paresthesia or dysesthesia of the mandibular nerve. If we are planning for immediate loading and we have done our temporary restauration in base of our computerized plan, deviation in the vertical position of the implant will affect the position of the abutment, affecting the accuracy of the temporary prosthesis, extending the working time till we adapt the prosthesis to the new position.Keywords: bone reduction, computer aided navigation, dental implant placement, surgical guides
Procedia PDF Downloads 3321121 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study
Authors: Bikram K. Das, Kalyan K. Chattopadhyay
Abstract:
The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.Keywords: graphdiyne, graphyne, nitrogen-doped, ORR
Procedia PDF Downloads 132